Contents

Introduction to CAT4

Administration Instructions: Paper Edition

Administration Instructions: Digital Edition

Guidance on scoring and reporting results

Case studies

Technical information

Appendices

- Appendix A CAT4 Time Chart
- Appendix B Sample letters
- Appendix C Articles of interest to CAT4 users
- Appendix D Group Header Sheet

Miscellaneous

CATAS (Cognitive Abilities Test Attitudinal Survey)
GL Assessment wishes to thank all those who have contributed to the publication of CAT4. In particular, we would like to acknowledge the commitment of all the schools and students who took part in pre-trialling, trialling and standardisation activities, without whom this project would not have been possible.

GL Assessment

Publishing and Production team
Andrew Thraves, Publishing and Strategy Director
Sue Thompson, Senior Publisher
Pauline Smith, Senior Psychometric Consultant
Cres Fernandes, Head of Statistics
Natalie Cook, Production Manager
Jo Eggeman, Project Manager
Lumière Chieh, Production Editor
Philippa Reddington, Editorial and Production Co-ordinator

School liaison
Rachel Watts, Data Services Manager

Report development
Jenny Featherston, Business Solutions Analyst
Ian Helm, Senior Project Manager
Amanda Power, Head of Assessment Services

Technical development
Paul Webster, Operations Director
Phil Shrimpton, Head of Development
Stu Cairns, Senior Developer
Neil Parvin, Senior Project Manager
Jon Wilkins, Savenet, Developer

The Riverside Publishing Company
We are grateful to colleagues at The Riverside Publishing Company who have aided in the content development of CAT4.
Introduction to CAT4

What is CAT4?

The Cognitive Abilities Test Fourth Edition (CAT4) is a suite of tests developed to support schools in understanding students’ abilities and likely academic potential. Results from CAT4 can be used to inform individual and group teaching, for target setting and monitoring the performance of groups of students.

CAT4 assesses the ability to reason with and manipulate different types of material. CAT4 comprises four batteries of tests that assess the main types of mental processing which play a substantial role in human thought. Together, these four batteries provide users with a comprehensive understanding of the core abilities related to learning by assessing a student’s capabilities when dealing with each type of processing.

The CAT4 batteries therefore assess:

- reasoning with words
- reasoning with numbers
- reasoning with shapes and designs
- thinking with and mentally manipulating precise shapes.

The set of four scores obtained from assessment with CAT4 provides a profile of a student’s level and pattern of abilities, as well as providing an overall summary score of his or her reasoning abilities across the four areas.

CAT4 is available in both paper and digital editions. The test content of each is identical. Administration instructions for both editions are contained in this pack. Details of scoring and reporting services for schools using both the paper and digital editions of CAT4 are set out in the section entitled ‘Guidance on scoring and reporting results’ in this pack.

During the development of CAT4, the authors have emphasised the assessment of relational thinking; that is, the ability to understand relationships among elements using the media of the four test batteries. As with the previous edition, CAT3, the basic elements of each test have been kept simple and clear to ensure the tests are accessible to students of the appropriate age for each test level. The tests are therefore appropriate for use with all students who have been educated in the UK and exposed to modern cultural influences.
Why a fourth edition?

The fourth edition of CAT was developed for two main reasons.

- First, as CAT3 was standardised in 2000, it was necessary to restandardise it so that the normative data accurately reflect the current abilities of students.

- The second reason was to further develop the structure of the CAT4 batteries in accordance with established research on the importance of spatial abilities. As a result, CAT4 includes a new Spatial Ability Battery. This battery includes one of the tests from the CAT3 Non-verbal Reasoning Battery plus a new test developed specifically for CAT4. This development further sharpens the understanding of students’ non-verbal and spatial abilities by ensuring each battery is a purer measure of what it is intended to assess.

More on the Spatial Ability and Non-verbal Reasoning Batteries

The Spatial Ability Battery is designed to assess how well students can create and retain mental images of precise shapes and objects, and then manipulate these in their minds. This ability is critical to effective working in many ‘spatial’ disciplines and careers (for example engineering, physical sciences, mathematics and architecture). Yet it has traditionally been under-appreciated or under-assessed in schools, either being ignored completely or viewed as relevant only to ‘low-level’ manual skills.

For this reason, students who excel in such thinking have been under-identified and therefore not properly encouraged to actualise their potential. Perhaps as a consequence, spatial disciplines have struggled to obtain enough recruits and those that they do recruit have sometimes not been best suited to the demands of the work, having been chosen on the basis of inappropriate ability measures, family pressure or gender-stereotyping – for example, ‘engineering is a man’s job’.

In recent decades, major longitudinal research projects have conclusively shown that spatial ability is a significant element underlying performance in spatial disciplines. Also, it has been found that those who are most likely to pursue and excel in these domains are people with a relative strength in spatial ability, rather than necessarily those who do well in all types of ability test. The balance of abilities – even a small difference within a person who has a very high level of general ability – seems critical for career choice and success. Assessing people solely on verbal and mathematical tests is therefore likely to miss many of those with the highest potential to succeed in spatial careers. Such research is presented succinctly in the article Recognizing Spatial Intelligence (Park et al., Scientific American™, November 2010).
The short article, reproduced in full in Appendix C of this pack, concludes:

Due to the neglect of spatial ability in school curricula, traditional standardized assessments, and in national talent searches, those with relative spatial strengths across the entire range of ability constitute an under-served population with potential to bolster the current scientific and technical workforce.

The Non-verbal Reasoning Battery is designed to measure something distinct from the Spatial Ability Battery. The materials used are still shapes but the difficulty of the task lies not in creating, maintaining and mentally manipulating precise images but in reasoning with easily distinguishable shapes and designs. Like the Verbal and Quantitative Reasoning Batteries, it measures basic reasoning processes such as identifying similarities and relationships but using shapes and designs rather than words or numbers as the stimulus material. For this reason, it provides a means by which those with a spatial bias can demonstrate how effectively they can engage in general reasoning processes.

However, the fact that the shapes and designs used are easy to distinguish means that those with a verbal bias can also succeed on the non-verbal items, by describing the shapes and designs in words and then reasoning out the solution verbally – for example, ‘large circle goes to small circle and two horizontal lines are added’. This flexibility in solving the non-verbal items means that the battery provides a good indication of students’ ability to solve problems using whatever cognitive resources they can muster. It is therefore not surprising that research has shown non-verbal tests often relate closely to overall scores on large batteries of different tests.

Although all four batteries are equally weighted in the mean CAT4 score for the four batteries, the Non-verbal Reasoning Battery consistently correlates at the highest level with that overall score, thus supporting this research. This makes the Non-verbal Reasoning Battery particularly important when assessing students whose performance on the Verbal and/or Quantitative Reasoning Batteries may not be representative so that the overall mean CAT score needs to be treated with caution. This impairment may result from any number of reasons such as poor educational background, specific learning difficulties or not speaking English as a first language.

For students who can be validly assessed with all four batteries, the introduction of the Spatial Ability Battery means that CAT4 provides a clear measure of the extremes of thinking processes, namely, those using verbal processing (the ‘inner ear/voice’) and those using spatial processing (the ‘inner eye/hand’). Additionally, the Non-verbal and Quantitative Reasoning Batteries provide measures of the ability to think using both these types of processing together.
Other improvements in CAT4

In addition to these developments, the fourth edition of CAT gave the opportunity to incorporate a number of improvements which are listed below.

- The overall time for CAT4 is shorter than that for CAT3, despite the inclusion of the new Spatial Ability Battery. This has been achieved by reducing the number of tests in each battery from three to two.

- There are enhanced individual and group reports, including greater support for interpreting test scores and narrative text to support both interpretation of profiles and scores and ideas for individual interventions.

- New reports for teachers, parents and students have been produced, including narrative descriptions designed to support both the interpretation of test scores and further learning and development.

- A new Level G has been developed. This is set at an ‘above average’ ability to reflect the bias in usage of CAT4 in Years 11/S5 and 12/S6.

- By carefully developing question and answer options, the items in the Verbal Reasoning Battery are more up-to-date and culturally universal.

- The extent to which scoring on the Verbal and Quantitative Reasoning Batteries depends on past education has been reduced. This has been achieved by removing ‘Sentence Completion’ and ‘Equation Building’, which necessitated reading comprehension skills and knowledge of mathematical conventions respectively.

- The content of any particular level is now more independent of its adjacent levels. This allows better targeting of the average difficulty level at each level and more scope for retesting without excessive practice effects. Retesting every two years will ensure that students are tested with all new material.
What is in each battery?

CAT4 consists of four test batteries, each of which contains two tests. These are described below.

Verbal Reasoning Battery

In the *Verbal Classification* test, each question presents three words that are all similar in some way. Students have to identify the conceptual link between the three words and then select from a list of five further words the one which best fits with the first three. This test assesses general verbal reasoning and the ability to extract general rules or principles from specific examples by identifying similarities and relationships between the concepts. Also assessed are general knowledge (for example, that an ankle is a joint), word knowledge (for example, that ‘cold’ can mean a virus or a low temperature) and language development (for example, that some words can be verbs or nouns, or how to use words like ‘although’ or ‘moreover’).

Verbal Analogies

In the *Verbal Analogies* test, each question presents a verbal analogy in the form of ‘A → B, C → _’. Students have to work out how the first pair of words is related to each other and then select from five answer options the one that completes the second pair. These questions involve two elements to the reasoning. First, students have to look for similarities...
and differences between the first pair, for example the second thing is an element of the first or a descriptive term for the first. Second, they have to duplicate that relationship starting with the third word presented. Like Verbal Classification, this test also assesses general verbal and word knowledge.

\[
\text{blue} \rightarrow \text{colour} : \text{socks} \rightarrow
\]

A clothing B feet C shoes D pair E wear

Although the student’s store of general and word knowledge influences their performance on the Verbal Reasoning Battery, questions have been written to maximise the students’ flexibility in identifying and using concepts rather than taxing their background knowledge or vocabulary. As far as possible, the words used are likely to be commonly known at the level in which they are used. For example, ‘windy’ might be used in Level A but ‘hurricane’ in Level E. Questions emphasise general basic reasoning processes, with the relationships being presented in verbal terms.

Since the greater part of education is presented through the verbal medium, the importance of this battery for diagnosis and educational attainment is clear. Tests of verbal reasoning have always been among the best predictors of educational progress.

Quantitative Reasoning Battery

In the *Number Analogies* test, each question presents three pairs of numbers such as ‘4→6, 8→10, 9→?’. Students have to work out how the pairs of numbers are related and then complete the third pair by selecting the answer from the five options presented. The questions in this test assess the same basic reasoning processes that are assessed in the equivalent Verbal Analogies test, namely, identifying relationships and creating further examples of them. The questions in this test also assess basic arithmetic knowledge (for example, that 6 is twice 3), accuracy in doing simple arithmetic and flexibility in identifying and being aware of numerical relationships (for example, that 7 might be twice 3 plus 1 or four times 2 minus 1).

\[
\begin{array}{llllll}
5 & \rightarrow & 13 & \quad & 11 & \rightarrow & 19 & \quad & 6 & \rightarrow & ? & \quad & A & 9 & \quad & B & 12 & \quad & C & 14 & \quad & D & 16 & \quad & E & 18
\end{array}
\]

In the *Number Series* test, students have to work out the rule underlying the progression in the number series in each question and then select the next number in the series from the five options presented. This test assesses the same underlying basic reasoning processes and number facility as Number Analogies.

\[
3 \quad 7 \quad 15 \quad 31 \quad 63 \rightarrow \quad A \quad 94 \quad B \quad 96 \quad C \quad 97 \quad D \quad 127 \quad E \quad 137
\]

Next to verbal reasoning, the ability to work with numerical material is one of the most frequently required capabilities in educational settings.
Fields such as mathematics, science, geography and economics make considerable demands on quantitative abilities. Quantitative reasoning together with verbal reasoning constitutes what some theorists have called ‘academic ability’ in that they were the two types of thinking that were most obviously represented in traditional school curricula.

Non-verbal Reasoning Battery

In the *Figure Classification* test, each question presents students with three separate figures and they have to identify the conceptual link or underlying characteristic that all three figures have in common. They then have to select the one figure from five answer options that goes with the first three. This test assesses the same underlying reasoning processes as the Verbal Reasoning Battery tests; that is, the ability to identify similarities, differences and relationships between elements. The ability to form representations of shapes is only involved at a very low level, so those demands are unlikely to impact upon the vast majority of students. Only the scores of those who cannot spot gross visual distinctions (for example, a 90 degree angle versus a 70 degree angle) would be adversely affected by the representational demands of the test. In all other cases, it is the reasoning processes that constitute the primary source of difficulty.

In the *Figure Matrices* test, each question presents a figural analogy in the form of ‘A→B, C→_’. Students have to work out how the first pair of figures is related to each other and then select from five answer options the one that completes the second pair. The underlying reasoning processes used in solving Figure Matrices are essentially the same as those in Verbal Analogies and Number Analogies. Visualisation is assessed to a larger degree in this test compared with Figure Classification, as the questions require students to be able to use visual ‘working memory’ to imagine transformation and combinations of shapes.\(^1\)

\(^1\) Working memory is the facility to retain and manipulate information (words, numbers and images) for a short time in order to perform a specific task – for example, the ability to remember a phone number or date, solve a mental maths problem or, in this case, hold the original shape in mind and imagine it transformed. Efficient working memory is essential for learning but the amount of information that can be held is limited and unstable particularly if an individual is distracted or distractible; if this happens the process has to be begun again!
The tests in the Non-verbal Reasoning Battery do not make use of words or numbers, and the geometric and figural elements used bear little direct relationship to formal educational instruction. The tests emphasise the discovery of, and flexibility in, manipulating relationships expressed in figural designs.

Spatial Ability Battery

In the Figure Analysis test, each question presents students with a square that is repeatedly folded and then has one or more holes punched through it. Students have to work out what the final product would look like when unfolded, and select this from the five answer options provided. This test assesses visualisation processes, that is the ability to create a complex mental image, retain it in mind and manipulate it before comparing the imagined result with other presented material.

In the Figure Recognition test, students are shown five complex designs as line drawings with a target shape below. Students have to identify which of the five designs contains the exact same size outline of the target, including each side in full. This test assesses visualisation skills, particularly the ability to create and retain a firm mental image of a shape that represents angles and lengths accurately.
As with the Non-verbal Reasoning Battery, the tests in the Spatial Ability Battery do not make use of words or numbers. Instead they emphasise visualisation and manipulation of mental images.

More about the batteries

Non-verbal and spatial tests have been found to be significant predictors of educational attainment, despite their content being generally unrelated to formal schooling. Among students with similar levels of verbal or quantitative ability, the non-verbal and spatial tests can indicate significant aptitude for subjects such as mathematics, physics, design, engineering and architecture which draw on visual-spatial abilities.

As the Non-verbal Reasoning and Spatial Ability Batteries do not rely on reading or the use of English, they can be particularly useful when assessing students who have English as an additional language, or who have reading difficulties or have experienced disrupted education. They are also not strongly influenced by other factors such as a child’s cultural background, although caution needs to be exercised when interpreting results for children from non-Western backgrounds, as they may be unfamiliar with the type of material and tasks used.

Unlike the Verbal and Quantitative Reasoning Batteries, questions in the Non-verbal Reasoning and Spatial Ability Batteries do not require students to have any prior factual or conceptual knowledge of any kind, beyond that required to access the test instructions. These batteries therefore assesses students’ general cognitive capacity to solve novel problems they have not been directly taught. Where performance on the Non-verbal Reasoning or Spatial Ability Batteries is superior to that on the other two batteries, it may indicate these students have potential that is not being fully shown in their performance on school-related tasks.

Across the four test batteries, similar question types have been included as far as possible. The purpose of this is to reduce variation in test performance that may be attributed to ability with, or understanding of, specific question types. For example, analogy tests have been included in the Verbal, Quantitative and Non-verbal Reasoning (Figure Matrices) Batteries. This means that students’ profiles of results will more accurately reflect their reasoning ability with each type of material, rather than their ability to undertake different forms of test question.
How do I choose the test level?

Seven different levels of the CAT4 tests are available. They have been developed in an overlapping, progressive format and are referred to as Levels A to G. A limited number of common questions appear in adjacent test levels, but no common questions appear in alternate levels (for example, none of the questions in Level A will appear in Level C).

The target year group and age range covered by the norms for each test level are shown in the table below.

<table>
<thead>
<tr>
<th>Level</th>
<th>Target year group</th>
<th>Age range for general population norms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>England & Wales</td>
<td>Scotland</td>
</tr>
<tr>
<td>A</td>
<td>Y4</td>
<td>P5</td>
</tr>
<tr>
<td>B</td>
<td>Y5</td>
<td>P6</td>
</tr>
<tr>
<td>C</td>
<td>Y6</td>
<td>P7</td>
</tr>
<tr>
<td>D</td>
<td>Y7</td>
<td>S1</td>
</tr>
<tr>
<td>E</td>
<td>Y8</td>
<td>S2</td>
</tr>
<tr>
<td>F</td>
<td>Y9 & Y10</td>
<td>S3 & S4</td>
</tr>
<tr>
<td>G</td>
<td>Y11 & 12</td>
<td>S5 & S6</td>
</tr>
</tbody>
</table>

Schools are recommended to use the level of CAT4 shown for the year group they want to assess. This is particularly important if the school results are being combined with those from other schools for whatever reason. Although the standardised scores reported from CAT4 are theoretically comparable whichever level of the test is being used, in practice there are slight differences owing to the different sets of questions that are used in each test.

Level G is designed to be somewhat more challenging for the average student than the other levels, since the main usage of this type of test in the later teenage years is with students at the more able end of the full ability spectrum. Making the test generally harder ensures that this range of ability can be assessed more accurately.

Exceptions

There are a few exceptional circumstances in which a school may choose to use a lower or higher level of CAT4 with a group of students. Examples of such situations might be:

- a school testing Year 6 students at the end of the summer term to provide results to the children’s intended secondary schools, where Level D may be more appropriate
• a selective school testing a year group composed of highly able students, where the next level up may be used, or a non-selective school in a selective area where the next level down may be appropriate.

It must be emphasised that such cases are the exception rather than the rule. On the rare occasion when individual students fall outside the age range, their scores will be based on the upper or lower end of the age range of the level of CAT4 they have taken. So, a student taking CAT4 Level B who is 11:06 will receive scores based on the upper age limit of 10:11.

What test results can I obtain?

The number of questions a student answers correctly on each test is referred to as their raw score. Raw scores are then interpreted by comparing them to the performance of other students of the same chronological age group by means of so-called ‘normative scores’.

The analysis of raw scores plus the age of the students, in the context of large cohorts of students, results in a series of ‘normative scores’. Three types of normative score are provided to interpret students’ performance on CAT4:

• Standard Age Scores
• National Percentile Rank
• Stanines.

Further information about CAT4 scores and their interpretation is given in the section entitled ‘Guidance on scoring and reporting results’ in this pack.

How to use this pack

This pack contains everything you need to administer and interpret CAT4:

• administration instructions for both the paper and digital editions of the assessment (in separately bound booklets that can be taken out of the pack for ease of use)
• a description of the reports available from CAT4 and information about the scores
• guidance, in the form of case studies, on how to work with students and teaching colleagues to implement the results from CAT4
• brief technical details, with more detailed information available to download from www.cat4support.com
• a copy of the Time Chart for use during administration and an example of the Group Header Sheet for returning completed Answer Sheets can both be found in Appendix A and D

• some key articles in Appendix C, detailing research that underpins the development of CAT4

• an overview, with administration instructions for the Cognitive Abilities Test Attitudinal Survey (CATAS) for those who wish to assess students’ attitudes to aspects of school life alongside their abilities.

As they become available, updates to the pack will be provided to all users including further case studies based on the use of CAT4 in schools and demonstrating how it can be used with other assessments such as GL Assessment’s Progress in English, Progress in Maths and New Group Reading Test.

CAT4 website

The CAT4 website provides additional information about the assessment, frequently asked questions, sample reports and videos/demonstrations of the product.

The website will be updated and added to post publication. Please visit www.cat4support.com.
You will need a copy of these administration instructions to ensure that the test administration is carried out according to standard procedures as this will obtain the most accurate results.

Please follow the instructions in this guidance exactly.

The tests must be administered in the order in which they appear in the Student Booklet and in this administration guide. It is desirable that they are given in three discrete test sessions with breaks in between.

Prior to testing

The administrator will need to read through the following instructions well in advance of the test sessions in order to gain familiarity with the practicalities of administering the test, the example and practice questions and the way in which students should record their answers on the Answer Sheets. Even those who are familiar with administering previous versions of CAT should read through these instructions carefully, as there are significant changes to the test content and practice materials.

The instructions for each test include an example with the answer, followed by either two or three practice questions for which answers are provided after the students have attempted them on the Answer Sheets. It is very important that time is taken to ensure all students understand the nature of the tasks in the test. However, the wording of the example and practice question explanations should not be supplemented by additional information as this may give an unfair advantage to some students. It is acceptable, however, to repeat or rephrase the given explanations as necessary to ensure that all students understand them.

Time needed for testing

Each battery of CAT4 consists of two tests which take 8, 9 or 10 minutes each (see the following instructions for each test and also the Time Chart in Appendix A for timings). Each battery should take no longer than 45 minutes in total, including administration instructions, examples and practice questions.

It is recommended that CAT4 is administered in three parts and the instructions that follow assume this will be the case and indicate where breaks should be taken. It is desirable to administer the test in discrete sessions and it is not recommended that the whole of CAT4 is given in a single session as fatigue may well impact on performance in the final tests.
Materials needed for testing

For the test session, the following materials will be needed:

- A copy of these administration instructions.
- An accurate stopwatch, watch or clock with a second hand or display.
- A photocopy of the Time Chart found in Appendix A.
- A Student Booklet for each student plus an extra copy for the administrator.
- An Answer Sheet for each student.
- An HB pencil and an eraser for each student, plus some spare HB pencils in case of breakage. **Pens must not be used.**
- Rough paper for the tests in the Quantitative Reasoning Battery.

Check the accuracy of your timer beforehand.

General arrangements for testing

- Seat the students so that they cannot easily copy from one another.
- Be sure the testing room is comfortable and well lit and that the students have room on the desk to handle both the Student Booklet and the Answer Sheet.
- Place a ‘Testing – Do Not Disturb’ sign on the door.
- Try to forestall any interruption of the testing session by visitors or announcements.
• Make sure the students understand the example and practice questions before you start each of the tests in the battery. Help any student having difficulty by repeating or rephrasing the explanations as necessary, but do not provide any additional information beyond that given in the explanations provided in these instructions and in the Student Booklet.

Instructions for administering the tests

• Read out to the students all directions given here in colour, exactly as they appear. Any other instructions that are not in colour are for the administrator’s attention and should not be read out to the students.

• Within the text to be read out to the students, any instructions to the administrator are given in square brackets and are not in colour. Do not read these out.

• Read the instructions from this administrator’s guidance, not from a copy of the Student Booklet, as there are additional statements (for example, ‘Are there any questions?’) that are not printed in the Student Booklet.

• The example and practice items are presented for your reference only: these do not have to be read out to the students as they are presented in the Student Booklet.

Distributing the test materials

• Ensure you have a Student Booklet of the correct level and an Answer Sheet for each student, plus a Student Booklet for yourself.

• Ensure each student has at least one sharpened HB pencil and that you have spares readily available. Erasers will be required as the students will be instructed to rub out responses that they wish to change.

• When all the students are seated, say:

 Today you are going to take some short reasoning tests.

 There are several different kinds of questions in these tests. Be sure to do your best on all of the questions.

 Now I will give out the Student Booklets and Answer Sheets. Place them on your desk and wait until I give further instructions. Do not open your Student Booklets.

• Distribute the Student Booklets and Answer Sheets.
Directions to the students

If possible, display the school name, class and today’s date for the students to copy. Please note that the format for ‘Today’s date’ and ‘Date of birth’ needs to be ‘DD MM YYYY’.

When each student has a copy of the Student Booklet and an Answer Sheet, say:

Look at the front of your Answer Sheet. At the top is a box for you to fill in some information about yourself.

Where it says ‘School’, write carefully in capital letters ………. [as displayed or given verbally].

Where it says ‘Class’, write ………. [as displayed or given verbally].

Where it says ‘Today’s date’, write today’s date in the boxes like this ………. [as displayed or given verbally].

Where it says ‘Date of birth’ write your date of birth in the boxes.

Recording the student’s name

Now open your booklet at page 2 and follow while I read the instructions. Does everyone have the right place?

[Pause]

Your answers to the test questions will be marked on a separate Answer Sheet. The Answer Sheet will be scored by a computer. The computer will have to ‘read’ and copy your name from the Answer Sheet. To make this possible, you must mark your name in a special way on the ‘name block’ on the Answer Sheet.

Look at the example name block below. It has been marked for ANNE BURTON who was born on 17th of February 2002. Her name has been written in capital letters in the row of boxes at the top. Her first name has been written under ‘Student’s forename’ and her family name has been written under ‘Student’s surname’.

Now look at the alphabet columns below her name. Notice that a letter has been marked for each letter of the name. The B has been marked below the B of BURTON, the U below the U of BURTON, the R under the R, and so on. Notice how each letter has been marked by drawing a firm line through the middle of it.

Now write your name in capital letters in the boxes under ‘Student’s forename’ and ‘Student’s surname’. If there aren’t enough boxes to complete your name, just fill in the first eight letters under ‘Student’s forename’ and the first 13 letters under ‘Student’s surname’.

[Pause]
Now mark the letters in the alphabet columns under your name. Begin with the first letter of your name and find this same letter in the column directly underneath it. Draw a line carefully over the middle of the letter. Do the same for each letter of your forename and surname. If you make a mistake, rub it out carefully, and make the correction.

If you have any questions about what to do please raise your hand.

[Pause]

Recording the student’s date of birth

This section of the Answer Sheet may be completed by either the student or teacher but, for younger students, it is recommended that the teacher completes this information. It is very important that this information is completed correctly and it must be double-checked by the teacher if the student completes it.

If students are to complete the details, read out the following:

Now look at page 3 of your booklet. Now look to see how ANNE BURTON’s date of birth has been shown. She was born on 17th February 2002, so the boxes showing a 1 and a 7 have a line through them for 17. The boxes next to February and 2002 have also been marked.

Now we are going to complete the ‘Date of birth’ box on your Answer Sheet. [Pause] Draw a line over the number of your birthday. [Pause] Now mark the box next to the month in which you were born. [Pause] Finally, mark the box next to the year in which you were born.

Look at the example in the Student Booklet to help you do this.

Raise your hand if you have any questions.

Recording the student’s gender and ID number

Next to the top panel is a block marked ‘Gender’. Ask the students to mark the appropriate box.

The student’s ID number is their DfE Unique Pupil Number (UPN), which is optional. However, it does add an additional check for accuracy as each number is unique and, therefore, if the student’s name or date of birth cannot be read for some reason, the UPN can be used to identify the student.

You will need to provide each student with their UPN to copy. Please include the following instructions if you intend to do this:

Look at the ‘Student’s ID number’. Write your number in the boxes and mark the letter and numbers in the column directly underneath it. Remember to draw a line carefully over the middle of the letter or number.
Taking the test

Ask the students to turn to page 3 of their Student Booklet.

Check all the students are on the right page and read:

In this booklet there are eight tests that use words, numbers and shapes.

You may find some of the questions easy and some of them hard. Try to answer every question, but do not spend too much time on those you find difficult. Do those that you can. Then, if you have time, go back and answer those that you have missed. If you are not sure of the answer, mark the answer you think is right. If you have completed the questions and have time left, then go back and check your work.

You must mark all your answers in pencil by filling in the correct box on the Answer Sheet. You must not use pen.

If you want to change an answer, rub out your first answer, and then mark the answer you think is correct.

Please do not write in this booklet.

Now work through the example and practice items for the first test with the students as explained on the following pages, and continue with further tests as directed in this guidance.
Figure Classification

When the students are ready, say:

Now look at page 4 and follow while I read the directions.

Pause and check all the students are on the right page, and then read:

In each of these questions the first three figures are similar in some way. Decide how they are the same. Then choose the figure from the answer choices that goes with them. Look at the example below.

Example

Think about how the first three figures are similar. Each figure is shaded and has four sides. Now look at the answer choices. Find the one that is shaded and also has four sides. The correct answer is D. This is how you would show the answer.

Now try some practice questions. Mark your answer choices by filling in the correct box on the Answer Sheet. Remember, if you want to change your answer, rub out your first choice and mark your new letter choice.

Practice 1

Practice 2
Pause while the students choose their answers. Walk around the room, checking to make sure they are marking their answers correctly. Clear up any difficulties. Then continue as follows:

The answer to practice question 1 is K, because that is the only choice that is a striped semi-circle, like the first three figures.

The answer to practice question 2 is M, because that is the only choice that has two semi-circles, one up and one down, with one striped and one dark.

Are there any questions?

Answer any questions, and then read:

Do all of the questions in this test the same way. Try to answer every question.

You will have 10 minutes to work on this test.

Turn over the page and begin. Work until you reach the stop sign at the end of the test.

Start your stopwatch or note the exact time to the nearest second on your watch or clock. Note this time on your Time Chart, and then add exactly 10 minutes and fill in the stopping time.

While the test is in progress, walk around the room to make sure that all the students are marking their answers by drawing a line across the letters and that no one has turned to a page they should not be on. Encourage any students who finish early to check their answers.

After exactly 10 minutes, say:

Stop. Put your pencils down and turn to the next page.
Figure Matrices

When the students are ready, say:

Now turn to page 10 and follow while I read the directions.

Pause to check all the students are on the right page, and then read:

In each of these questions there are figures arranged in a large square. One figure is missing and its place is shown by a question mark. You have to choose which figure is the missing one. Look at the example below. [Pause]

Example

Look at the top pair of figures – a large square and a small square. They are the same shape but the second figure is smaller.

Look at the bottom figure – a large circle. Find the figure from the answer choices that completes the pair in the same way. The correct answer is D because this is a small circle. This is how you would show the answer. [Pause and indicate the example in the Student Booklet.]

Now try some practice questions. Mark your answer choices by filling in the correct box on the Answer Sheet. Remember, if you want to change your answer, rub out your first choice and mark your new letter choice.

Practice 1
Pause while the students choose their answers. Walk around the room, checking to make sure they are marking their answers correctly. Clear up any difficulties. Then continue as follows:

The answer to practice question 1 is H, because if ‘one arrow up’ goes to ‘two arrows up’, then ‘one arrow down’ goes to ‘two arrows down’.

The answer to practice question 2 is Q, because if ‘three arrows above the line’ go to ‘six arrows below the line’, then ‘three circles above the line’ go to ‘six circles below the line’.

The answer to practice question 3 is R, because the three different shapes are arranged in a pattern. The shapes move along one space as you look down the three rows or across the three columns. You can see the same shape appears in a diagonal pattern.

Are there any questions?

Answer any questions, and then read:

Remember, you have to choose which figure is the missing one by completing the pair or the pattern in the large square.

Do all of the questions in this test the same way. Try to answer every question.
You will have 10 minutes to work on this test.

Turn over the page and begin. Work until you reach the stop sign at the end of the test.

Start your stopwatch or note the exact time to the nearest second on your watch or clock. Note this time on your Time Chart, and then add exactly 10 minutes and fill in the stopping time.

While the test is in progress, walk around the room to make sure that all the students are marking their answers by drawing a line across the letters and that no one has turned to a page they should not be on. Encourage any students who finish early to check their answers.

After exactly 10 minutes, say:

Stop. Put your pencils down and close your booklets.

At this point, if the test session has finished, please collect in the Student Booklets and Answer Sheets. If you are continuing the test session after a break, please ensure that all materials are secure until testing resumes.
Verbal Classification

When the students are ready, say:

Now turn to page 20 and follow while I read the directions.

Pause to check all the students are on the right page, and then read:

In each of these questions there are three words in bold type. These three words are similar in some way. Decide how they are the same. Then choose the word from the answer choices that goes with the first three words. Look at the example below.

Example

green blue red

A colour B crayon C paint D yellow E rainbow

The first three words are green, blue and red. [Pause] Green, blue and red are all colours. Look for the answer that is also a colour. The correct answer is D, yellow. This is how you would show the answer. [Pause and indicate the example in the Student Booklet.]

Now try some practice questions. Mark your answer choices by filling in the correct box on your Answer Sheet. Remember, if you want to change your answer, rub out your first choice and mark your new letter choice.

Practice 1

rain fog sunshine

F winter G snow H weather J dark K night

Practice 2

happy sad frightened

L tall M feel N think P new Q angry

Pause while the students choose their answers. Walk around the room, checking to make sure they are marking their answers correctly. Clear up any difficulties. Then continue as follows:

The answer to practice question 1 is G, snow, because rain, fog and sunshine are all types of weather and snow is also a type of weather.
The answer to practice question 2 is Q, angry, because happy, sad and frightened are all ways that you can feel and angry is also a way that you can feel.

Are there any questions?

Answer any questions, and then read:

Do all of the questions in this test the same way. Try to answer every question.

You will have 8 minutes to work on this test.

Turn over the page and begin. Work until you reach the stop sign at the end of the test.

Start your stopwatch or note the exact time to the nearest second on your watch or clock. Note this time on your Time Chart, and then add exactly 8 minutes and fill in the stopping time.

While the test is in progress, walk around the room to make sure that all the students are marking their answers by drawing a line across the letters and that no one has turned to a page they should not be on. Encourage any students who finish early to check their answers.

After exactly 8 minutes, say:

Stop. Put your pencils down and turn to the next page.
Verbal Analogies

When the students are ready, say:

Now turn to page 26 and follow while I read the directions.

Pause and check all the students are on the right page, and then read:

In each of these questions there are three words in bold type. The first two words go together. The third word goes together with one of the answer choices. Choose the word from the answer choices that goes with the third word. Look at the example below.

Example

new → old : wet →

A rain B drip C hot D sun E dry

Look at the first two words, new and old. [Pause] New is the opposite of old. Now look at the third word, wet. The word ‘wet’ must go with the answer in the same way that new goes with old. Since new is the opposite of old, you have to find the word that is the opposite of wet. Answer E, dry, is the opposite of wet. This is how you would show the answer. [Pause and indicate the example in the Student Booklet.]

Now try some practice questions. Mark your answer choices by filling in the correct box on the Answer Sheet. Remember, if you want to change your answer, rub out your first choice and mark your new letter choice.

Practice 1

cow → milk : chicken →

F feather G dinner H egg J hen K bird

Practice 2

carpet → floor : curtain →

L window M shade N hang P drapes Q cloth

Pause while the students choose their answers. Walk around the room, checking to make sure they are marking their answers correctly. Clear up any difficulties. Then continue as follows:
The answer to practice question 1 is H, egg, because a cow produces milk and a chicken produces eggs.

The answer to practice question 2 is L, window, because a carpet covers a floor and a curtain covers a window.

Are there any questions?

Answer any questions, and then read:

Do all of the questions in this test the same way. Try to answer every question.

You will have 8 minutes to work on this test.

Turn over the page and begin. Work until you reach the stop sign at the end of the test.

Start your stopwatch or note the exact time to the nearest second on your watch or clock. Note this time on your Time Chart, and then add exactly 8 minutes and fill in the stopping time.

While the test is in progress, walk around the room to make sure that all the students are marking their answers by drawing a line across the letters and that no one has turned to a page they should not be on. Encourage any students who finish early to check their answers.

After exactly 8 minutes, say:

Stop. Put your pencils down and turn to the next page.
Number Analogies

Hand out a sheet of rough paper to each student.

When the students are ready, say:

This paper is for any rough working you want to do. Do not write in the Student Booklet. Now look at page 32 and follow while I read the directions.

Pause and check all the students are on the right page, and then read:

Each of these questions starts with two numbers that are linked together in some way. Next there are two more numbers that are linked in exactly the same way. You have to work out how the numbers are linked and then complete the third pair. Look at the example below.

Example

\[
\begin{align*}
2 \rightarrow 3 & \quad 9 \rightarrow 10 \quad 6 \rightarrow ? \\
A & \quad B & \quad C & \quad D & \quad E
\end{align*}
\]

What do you have to do that gets you from 2 to 3 and also from 9 to 10? [Pause] You have to add 1. So, 6 changes to 7. The correct answer is E, 7. This is how you would show the answer. [Pause and indicate the example in the Student Booklet.]

This is just one example. In the test you might have to add, subtract, multiply or divide to get the second half of each pair. Remember, you must always check that what you decide for the first pair also works for the second pair.

Now try some practice questions. Mark your answer choices by filling in the correct box on the Answer Sheet. Remember, if you want to change your answer, rub out your first choice and mark your new letter choice.

Practice 1

\[
\begin{align*}
5 \rightarrow 4 & \quad 8 \rightarrow 7 \quad 3 \rightarrow ? \\
F & \quad G & \quad H & \quad J & \quad K
\end{align*}
\]

Practice 2

\[
\begin{align*}
1 \rightarrow 2 & \quad 5 \rightarrow 10 \quad 4 \rightarrow ? \\
L & \quad M & \quad N & \quad P & \quad Q
\end{align*}
\]
Practice 3

[Levels C and above only]

For some questions, you will have to do two operations to get from the first to the second number in each pair. For example, you might have to add and then divide.

Now try another practice question.

\[
\begin{align*}
[3 \rightarrow 7] & \quad [5 \rightarrow 11] & \quad [4 \rightarrow ?] & \quad R & \quad S & \quad T & \quad U & \quad V \\
5 & & & 5 & & 8 & & 10
\end{align*}
\]

Pause while the students choose their answers. Walk around the room, checking to make sure they are marking their answers correctly. Clear up any difficulties. Then continue as follows:

The answer to practice question 1 is G, 2, because you have to subtract 1, so 3 minus 1 is 2.

The answer to practice question 2 is N, 8. Here 1 plus 1 makes 2, but that doesn’t work for the second pair because 5 plus 1 is 6, not 10. Instead, you have to multiply by 2 to get the second part of each pair, so 4 times 2 is 8.

[Levels C and above only] The answer to practice question 3 is U, 9. Adding 4 doesn’t work for the second pair, so that can’t be the rule. You can see that 7 and 11 are each 1 more than 2 times 3 and 5, so the rule must be ‘times by 2 then add 1′. You work out the answer by saying 4 times 2 is 8 and 8 add 1 is 9.

Are there any questions?

Answer any questions, and then read:

Remember, you are working out the way to get from the first number to the second number in each of the three pairs. This rule will work for all three pairs in a question. When you go on to the next question, you will have to work out a new rule that works for that question.

Do all of the questions in this test the same way. Try to answer every question.

You will have 10 minutes to work on this test.

Turn over the page and begin. Work until you reach the stop sign at the end of the test.

Start your stopwatch or note the exact time to the nearest second on your watch or clock. Note this time on your Time Chart, and then add exactly 10 minutes and fill in the stopping time.

While the test is in progress, walk around the room to make sure that all the students are marking their answers by drawing a line across the letters and that no one has turned to a page they should not be on. Encourage any students who finish early to check their answers.
After exactly **10 minutes**, say:

Stop. Put your pencils down and close your booklets.

Collect in the rough paper.

At this point, if the test session has finished, please collect in the Student Booklets and Answer Sheets. If you are continuing the test session after a break, please ensure that all materials are secure until testing resumes.
Number Series

Hand out a sheet of rough paper to each student.

When the students are ready, say:

This paper is for any rough working you want to do. Do not write in the Student Booklet. Now look at page 36 and follow while I read the directions.

Pause and check all the students are on the right page, and then read:

Each of these questions shows a series of numbers. You have to work out the rule or rules used to arrange the numbers. Then decide what number should come next in the series. Look at the example below.

Example

15 14 13 12 → A 9 B 10 C 11 D 13 E 14

Look at the numbers and work out how the series is arranged. Each number is one lower than the number before it. Using this rule, think about which number should come after 12. [Pause] As 12 minus 1 is 11, the right answer is C, 11. This is how you would show the answer. [Pause and indicate the example in the Student Booklet.]

Now try some practice questions. Mark your answer choices by filling in the correct box on the Answer Sheet. Remember, if you want to change your answer, rub out your first choice and mark your new letter choice.

Practice 1

5 10 15 20 → F 25 G 30 H 35 J 40 K 45

Practice 2

18 5 17 7 16 9 → L 11 M 12 N 13 P 14 Q 15

Pause while the students choose their answers. Walk around the room, checking to make sure they are marking their answers correctly. Clear up any difficulties. Then continue as follows:

The answer to practice question 1 is F, 25, because the rule for this series is to add 5 to each number, and 20 plus 5 is 25.

The answer to practice question 2 is Q, 15. The easiest way to answer this question is to notice that there are two number patterns. The first,
third and fifth numbers are going down by 1 at a time: 18, 17, then 16. The numbers in between them are going up by two at a time: 5, 7 then 9. This means the next number must be 16 minus 1, giving 15.

Are there any questions?

Answer any questions, and then read:

Do all of the questions on this test the same way. Try to answer every question.

You will have 8 minutes to work on this test.

Turn over the page and begin. Work until you reach the stop sign at the end of the test.

Start your stopwatch or note the exact time to the nearest second on your watch or clock. Note this time on your Time Chart, and then add exactly 8 minutes and fill in the stopping time.

While the test is in progress, walk around the room to make sure that all the students are marking their answers by drawing a line across the letters and that no one has turned to a page they should not be on. Encourage any students who finish early to check their answers.

After exactly 8 minutes, say:

Stop. Put your pencils down and turn to the next page.

Collect in the rough paper.
Figure Analysis

When the students are ready, say:

Now turn to page 40 and look at the pictures while I read the directions.

Pause and check all the students are on the right page, and then read:

Each of the questions in this test is about folding paper and punching holes in it. You must decide how the paper would look when unfolded. Look at the example below.

Example

The top row shows how the paper is folded and punched through. The first square shows the paper at the start. The white line shows the crease and the arrow shows the direction of the fold.

The paper is folded down, so where it had been on the page is marked by dashed lines.

A hole has been punched after the fold was made. This is shown by the white circle. You have to decide how it will look if it is unfolded.

Because the paper was folded over, the hole would have gone through two layers. When unfolded, there will be two holes.

Which of the answer choices shows how the paper would look?

The correct answer is B. There will be one hole in the top half and one in the bottom half, both in the left-hand side of the paper. This is how you would show the answer. [Pause and indicate the example in the Student Booklet.]

Now try some practice questions. Mark your answer choices by filling in the correct box on your Answer Sheet. Remember, if you want to change your answer, rub out your first choice and mark your new letter choice.
Pause while the students choose their answers. Walk around the room, checking to make sure they are marking their answers correctly. Clear up any difficulties. Then continue as follows:

The answer to practice question 1 is K, because the hole is punched through all four layers of paper so, as the paper is unfolded, the holes will each be close to the centre of the paper, one in each quarter.

The answer to practice question 2 is P, because the hole is punched through both layers of paper so, as the paper is unfolded, the holes will be a mirror image of each other, with the crease being the mirror line.

Are there any questions?

Answer any questions, and then read:

Do all of the questions in this test the same way. Try to answer every question.

You will have 9 minutes to work on this test.
Turn over the page and begin. Work until you reach the stop sign at the end of the test.

Start your stopwatch or note the exact time to the nearest second on your watch or clock. Note this time on your Time Chart, and then add exactly 9 minutes and fill in the stopping time.

While the test is in progress, walk around the room to make sure that all the students are marking their answers by drawing a line across the letters and that no one has turned to a page they should not be on. Encourage any students who finish early to check their answers.

After exactly 9 minutes, say:

Stop. Put your pencils down and turn to the next page.
Figure Recognition

When the students are ready, say:

Now turn to page 48 and follow while I read the directions.

Pause and check all the students are on the right page, and then read:

This test is about hidden shapes. Each question has a target shape. The target is hidden in one of five designs. [Hold up your copy of the Student Booklet and point to the target and five designs in the example.]

You have to find where the target is hidden and mark the letter for that design.

The target will be exactly the same size and way round.

You won't need to imagine it turned around or flipped over.

All the sides of the target have to be shown on the design.

Look at the example below.

Example

Then continue, holding up your booklet and pointing where necessary:

Can you see the target in the example is hidden in design B? Here it is. [Point to B.]

This is how you would show the answer. [Pause and indicate the example in the Student Booklet.]

Now try some practice questions. Mark your answer choices by filling in the correct box on the Answer Sheet. Remember, if you want to change your answer, rub out your first choice and mark your new letter choice.
Pause while the students choose their answers. Walk around the room, checking to make sure they are marking their answers correctly. Clear up any difficulties. Then continue as follows:

The answer to practice question 1 is J. Only J shows all of the target shape. The answer to practice question 2 is Q. It isn’t L because that shows the target flipped over. It isn’t M or N because they have shapes that are the wrong size.

Are there any questions?

Answer any questions, then say:

Remember to look for:

- the same shape
- the same size
- the same way round
- and check that all the edges are shown on the design.

You will have 9 minutes to work on this test.
Turn over the page and begin. Work until you reach the stop sign at the end of the test.

Start your stopwatch or note the exact time to the nearest second on your watch or clock. Note this time on your Time Chart, and then add exactly 9 minutes and fill in the stopping time.

While the test is in progress, walk around the room to make sure that all the students are marking their answers by drawing a line across the letters and that no one has turned back to a page they should not be on. Encourage any students who finish early to check their answers.

After 9 minutes, say:

Stop. Close your booklets and put your pencils down. This is the end of the test.

Collect in the Student Booklets and Answer Sheets, checking that each student’s name has been completed legibly and correctly.
Scoring and Analysis Service

All Answer Sheets are marked by computer.

Package up your Answer Sheets, ensuring that they are clearly marked with your name and the school’s address. Include a completed Group Header Sheet, a sample of which is in Appendix D.

Please refer to the Group Header Sheet for details of where to send the Answer Sheets for scoring.
CAT4 COGNITIVE ABILITIES TEST
Administration Instructions: Digital Edition

Prior to testing

The administrator will need to read through the following instructions well in advance of the test session and refer to the online Testwise manual for details of how to import student details, which includes a template CSV file.

It is strongly advised that you go to the Testwise website:

www.testingforschools.com

and click on Setup Check where you will be able to run the Browser Compatibility Check. This will confirm that your system is compatible with GL Assessment digital tests and will ensure the smooth running of the test session.

Time needed for testing

CAT4 consists of eight short tests. The administration of the digital tests is in three parts with the Quantitative Reasoning tests split between Part 2 and Part 3. Test timings (which are fixed) with an approximation of the time needed for instructions, examples and practice items, are given in the table on the following page.

1 The Browser Compatibility Check includes a pop-up blocker and Adobe Reader plugin: students can take CAT4, however, if one or both are not installed.
Test environment

The test must be administered in a formal test environment with students made aware that they are taking a test and that the usual expectations of behaviour and constraints of a test session will be in place.

It is important that the invigilator is active in ensuring that students are working their way through the tests with intent and that there is no talking or opportunity to copy from another’s work.

Each student will need a computer, headphones and mouse, and all equipment needs to be in good working order.

Checklist for testing

Before the test session

- Carry out the Browser Compatibility Check to ensure the smooth running of the test session.
- Allow approximately 40 minutes of testing time for each part of CAT4.
- Provide computer, headphones and mouse in good working order for each student.
- Become familiar with these administration instructions.
- Provide rough paper and pencil for the Number Analogies and Number Series tests.

CAT4 Digital

<table>
<thead>
<tr>
<th>CAT4 Digital</th>
<th>Test Time*</th>
<th>Approximate time needed for instructions, examples and practice items</th>
<th>Approximate length of test session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure Classification</td>
<td>10 minutes</td>
<td>5 minutes</td>
<td>30 minutes + settling time</td>
</tr>
<tr>
<td>Figure Matrices</td>
<td>10 minutes</td>
<td>5 minutes</td>
<td></td>
</tr>
<tr>
<td>Part 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbal Classification</td>
<td>8 minutes</td>
<td>5 minutes</td>
<td>41 minutes + settling time</td>
</tr>
<tr>
<td>Verbal Analogies</td>
<td>8 minutes</td>
<td>5 minutes</td>
<td></td>
</tr>
<tr>
<td>Number Analogies</td>
<td>10 minutes</td>
<td>5 minutes</td>
<td></td>
</tr>
<tr>
<td>Part 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number Series</td>
<td>8 minutes</td>
<td>5 minutes</td>
<td>41 minutes + settling time</td>
</tr>
<tr>
<td>Figure Analysis</td>
<td>9 minutes</td>
<td>5 minutes</td>
<td></td>
</tr>
<tr>
<td>Figure Recognition</td>
<td>9 minutes</td>
<td>5 minutes</td>
<td></td>
</tr>
</tbody>
</table>

*A timer appears on screen and counts down from the time allocated to each test. This cannot be over-ridden as the tests in CAT4 are strictly timed. If a student does not reach the end of the test in the given time, the test will time-out and the student will be moved to the next section or will exit the test.

Rough paper and pencil may be used for the Number Analogies and Number Series tests.

See Getting the data analysis right in the Guidance on reporting and scoring results section to ensure that you get the analyses that will best meet your needs.
General arrangements for testing

- Be sure the testing room is comfortable.
- Place a ‘Testing – Do Not Disturb’ sign on the door.
- Try to forestall any interruption of the testing session by visitors or announcements.
- You may want to set up the computers in advance if your students are young, in which case it is advisable that a single password is used or the password requirement is ignored.

Introducing CAT4

The following wording may be used when introducing CAT4 to the students:

Today you are going to take some short reasoning tests. All instructions are given via the voiceover and you should listen carefully to make sure that you understand exactly what you have to do. There will be an example and some practice questions for each test, so listen carefully and work through these before starting each test.

Students must work in silence but, if they have a query, they should raise their hand and wait for the teacher to approach them. Answer any questions at this stage and explain that you cannot help with any of the test questions.

All directions, examples and practice items are part of the test and are delivered via the audio.

While the students are taking the test the teacher should walk around to check that they are progressing appropriately, that they are not having difficulty with the methods of answering and, importantly with digital tests, that they have not rushed through any part of the test without attempting to answer each question.

It is possible to keep the Testwise register open on the teacher’s machine and thereby track progress through the test. The register shows real time information about whether a student is logged on, has started or completed a test or part of CAT4 and what is ‘in progress’.
Accessing CAT4 digital edition

The Testwise URL is:

www.testingforschools.com

To access your account you will need to add your school’s Customer ID which will have been sent to you in an initial ‘welcome’ email confirming arrangements for CAT4 testing.

Once this has been typed in students will be taken to the screen below:

Now your students should click the **Take a test or Complete a survey** icon and type in the Register ID or test name which you will find on the register of students and which may be customised as required.

It may be more convenient to start the test session(s) by providing the URL with the school and test details which will have been provided in the ‘welcome’ email. The convention is:

www.testingforschools.com/#/schoolaccount/testname

If this URL is chosen, students will be taken directly into the test register and need just to select their names to begin the test.
They will see a list of names like the one below:

![Image of a list of names]

They should double-click on their name and enter their password in the pop-up box.

Then, from the list that appears, select the first part of CAT4 by clicking on the **Take Now** icon beside it.
The order in which CAT4 is taken is fixed and so students must work through parts 1 to 3 in order.

It is possible to take a break between parts. Testing can be completed over one, two or three sessions and may be carried out over one, two or even three days.

If completing the testing over one day, at least a 5 minute break between each pair of the three successive parts should help to refresh students.

Students must complete all tests and parts; if they exit the test mid-way their data will be lost. Each test is timed and students will not be able to move to the next until the time is up.

At the end of each test the following screen will appear:
At the end of each part the following screen will appear:

Once this part has been completed the student will be returned to the screen below and they should click on the **Take Now** icon next to any outstanding parts.
End of test

When all parts of CAT4 have been completed and the test timer has run out, your results are sent to Testwise.

Students must wait until the time for the final test has elapsed and their results will be stored automatically. Students must not try to exit the test or close the screen by clicking on the cross at the top right hand corner as this will cause results to be lost.

For queries such as forgotten passwords and locked accounts please refer to the Testwise manual at www.testingforschools.com.

For technical enquiries please contact the GL Assessment Technical Support team by calling 0845 602 1937 and selecting option 2.
Guidance on scoring and reporting results

Using CAT4 for the benefit of students

CAT has become established over many years as a reliable and informative assessment of students’ developed abilities. Results from CAT can help in intervention, monitoring progress and setting targets for future attainment.

Many teachers tell us that CAT is unique in the way it can ‘unlock potential’ – that is, identify a student with high level ability who may have been overlooked or who is in danger of underachieving. CAT has become recognised in the assessment of gifted students and is used by numerous schools to identify such students, many of whom may not be among the top sets, who need extra challenge in their schoolwork. These are just two of the varied uses of CAT.

Most students who take CAT do so once or twice in their school careers and the information the test yields can become a reference point against which progress and performance can be measured. It is desirable to test students more than once as their abilities develop and their profile may well change over time.

The more we know about an individual, the better position we should be in to offer a learning environment and ways of teaching and learning that allow individuals to maximise their potential. Information about a student’s reasoning ability will be key to many decisions and should be considered alongside attainment data and other factors known to impact on learning, such as attendance and attitude. The results from CAT4 provide evidence of a student’s present level of development in reasoning. So the pattern of scores will reveal particular strengths or weaknesses plus a comparison with previous scores from a lower level of CAT will give an insight into the student’s development.¹

When to test with CAT4

When CAT4 is administered will vary according to each school’s calendar and the purpose for which the results will be used.

Primary schools will most likely administer Levels A, B or C during the autumn term so that the diagnostic information can be used to modify, as necessary, the educational programme of an individual student or groups of students. Alternatively, these schools may choose to delay

¹ Increased scores at the second point of testing will indicate how much the student’s ability has developed and an increase in the Standard Age Score (SAS) of 10 points or more can be considered significant. Static scores, for example getting the same score on a particular battery in CAT4 Level B and again in Level D two years later, tell us that the student’s ability has developed at an average rate.
testing until students are due to transfer to their next schools, so that up-to-date information may be available to receiving schools. In such cases, it may be better to use the level of the test intended for the following academic year – for example, use Level D for students at the end of Year 6/P7 rather than Level C.

In receiving secondary schools, if objective test results are not available from all the contributing schools, the autumn term will be the most suitable time in which to administer CAT4.

Later use of CAT4 will be linked to the timing of particular decisions taken in the secondary school, such as the setting of end of key stage targets or the choice of appropriate examination or pre-vocational courses. Career guidance can also be greatly assisted by knowing a student’s profile of abilities as revealed by CAT4 results.

Some schools, however, will see greater advantage in choosing the spring term as a compromise between assessing what has happened and deciding what is likely to happen. There is still time to take action over weaknesses revealed by the testing, which are then less likely to be reinforced by the long summer break.

At any time of the year the new entrant to, or late transfer from, a school can be quickly and reliably assessed with the help of CAT4.

Scoring CAT4

CAT4 paper edition

All scoring of the CAT4 paper edition is done by computer. Computerised scoring has the advantage of ensuring complete accuracy and also allows the generation of automated individual and group reports. For details of GL Assessment’s Scoring and Analysis Service, please see the example of the Group Header Sheet in Appendix D.

CAT4 digital edition

The CAT4 digital edition is scored automatically on completion of the tests. Teachers and administrators can access reports through their school’s online account and reports can be generated on demand. For details of GL Assessment’s online scoring and reporting via Testwise, please see the Testwise manual in the Help section of the Testwise site: www.testingforschools.com once you have logged in.
Below is an example of a spreadsheet ready for upload to the register.

<table>
<thead>
<tr>
<th>UPN</th>
<th>Forename</th>
<th>Surname</th>
<th>Group</th>
<th>Password</th>
<th>Gender</th>
<th>Date of birth</th>
<th>EAL</th>
<th>Custom 1</th>
<th>Custom 2</th>
<th>Educational Needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>wb0011000</td>
<td>Lindsay</td>
<td>Parsons</td>
<td>7AD</td>
<td>None</td>
<td>F</td>
<td>04/04/2000</td>
<td>7</td>
<td>None</td>
<td>None</td>
<td>Free school meals</td>
</tr>
<tr>
<td>wb0011001</td>
<td>Lisa</td>
<td>Payne</td>
<td>7AD</td>
<td>None</td>
<td>F</td>
<td>06/06/2000</td>
<td>7</td>
<td>None</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>wb0011002</td>
<td>James</td>
<td>Simpson</td>
<td>7AD</td>
<td>None</td>
<td>M</td>
<td>13/06/2000</td>
<td>7</td>
<td>None</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>wb0011003</td>
<td>Jamie</td>
<td>Scott</td>
<td>7AD</td>
<td>None</td>
<td>M</td>
<td>11/09/1999</td>
<td>7</td>
<td>None</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>wb0011004</td>
<td>Lorraine</td>
<td>Jones</td>
<td>7PW</td>
<td>None</td>
<td>F</td>
<td>03/11/1999</td>
<td>7</td>
<td>None</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>wb0011005</td>
<td>Theo</td>
<td>Allen</td>
<td>7PW</td>
<td>None</td>
<td>M</td>
<td>10/12/1999</td>
<td>7</td>
<td>None</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>wb0011006</td>
<td>Matthew</td>
<td>Bauman</td>
<td>7PW</td>
<td>None</td>
<td>M</td>
<td>12/12/1999</td>
<td>7</td>
<td>None</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>wb0011007</td>
<td>Sarah</td>
<td>Griffiths</td>
<td>7AD</td>
<td>None</td>
<td>F</td>
<td>01/01/2000</td>
<td>7</td>
<td>None</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>wb0011008</td>
<td>Jean</td>
<td>Kim</td>
<td>7PW</td>
<td>None</td>
<td>M</td>
<td>05/05/2000</td>
<td>7</td>
<td>None</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>wb0011009</td>
<td>Allen</td>
<td>Lee</td>
<td>7PW</td>
<td>None</td>
<td>M</td>
<td>02/02/2000</td>
<td>7</td>
<td>None</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>wb0011010</td>
<td>Jaimin</td>
<td>Shah</td>
<td>7AD</td>
<td>None</td>
<td>M</td>
<td>09/09/2000</td>
<td>7</td>
<td>None</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>wb0011011</td>
<td>Isabelle</td>
<td>Rossini</td>
<td>7PW</td>
<td>None</td>
<td>F</td>
<td>14/04/2000</td>
<td>7</td>
<td>None</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>wb0011012</td>
<td>Jaimin</td>
<td>Shah</td>
<td>7AD</td>
<td>None</td>
<td>M</td>
<td>14/04/2000</td>
<td>7</td>
<td>None</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>wb0011013</td>
<td>Reah</td>
<td>Patel</td>
<td>7PW</td>
<td>None</td>
<td>F</td>
<td>09/02/2000</td>
<td>7</td>
<td>None</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>wb0011014</td>
<td>Anna</td>
<td>Templin</td>
<td>7PW</td>
<td>None</td>
<td>F</td>
<td>06/10/1999</td>
<td>7</td>
<td>None</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>wb0011015</td>
<td>Marcus</td>
<td>Cage</td>
<td>7PW</td>
<td>None</td>
<td>M</td>
<td>14/10/1999</td>
<td>7</td>
<td>None</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>wb0011016</td>
<td>Radika</td>
<td>Glass</td>
<td>7PW</td>
<td>None</td>
<td>F</td>
<td>06/03/2000</td>
<td>7</td>
<td>None</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>wb0011017</td>
<td>Marc</td>
<td>Harrison</td>
<td>7PW</td>
<td>None</td>
<td>M</td>
<td>14/09/1999</td>
<td>7</td>
<td>None</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>wb0011018</td>
<td>Marcus</td>
<td>Cage</td>
<td>7PW</td>
<td>None</td>
<td>M</td>
<td>14/10/1999</td>
<td>7</td>
<td>None</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>wb0011019</td>
<td>Marcus</td>
<td>Cage</td>
<td>7PW</td>
<td>None</td>
<td>M</td>
<td>14/10/1999</td>
<td>7</td>
<td>None</td>
<td>None</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Getting the data analysis right

This section helps you ensure that the analysis of CAT4 results will meet the needs of your students and your school.

Digital Edition

Tests will be taken on Testwise, a platform for administering our digital tests. When adding students to the Testwise register, certain pieces of information are mandatory. These are:

- Forename
- Surname
- Group (this should be the teaching group or tutor group rather than the year group as it will allow additional analysis by the teacher)
- Password (to be created by the school, for either each individual student or a group of students)
- Date of birth
- Gender
- UPN (allocated by the DfE)

For further help and information, refer to the Testwise manual which can be downloaded from www.testingforschools.com. Most schools will be able to export these details for a pre-determined group from the school’s management information system.

If additional analysis is required the following categories have been pre-programmed:

- Year (group)
- External reference
- Ethnicity
- Free school meals
- Special Educational Needs
- English as an additional language

The analysis for these categories (excluding the external reference) will be limited to a graphical display showing up to five different groups and a table including up to 20 different groups.

Note that if no entry is given for a student, Testwise processes this as ‘Unknown’. This ‘Unknown’ category will count as one of the groups for graphical display so it is recommended that wherever possible an entry is given for each category for each student. If more than 20 groups are defined, Testwise will report on the 20 most frequent and will classify the remainder as ‘Other’.
To get the best from the analysis it is strongly recommended that you limit the information as follows:

- **Year** – include the year group for the individual student
- **External reference** – this may be used to allocate an internal unique identifier for the students (as opposed to the DfE UPN)
- **Ethnic group** – include one from the following options:
 - Asian or Asian British – Bangladeshi
 - Asian or Asian British – Indian
 - Asian or Asian British – Pakistani
 - Asian or Asian British – any other Asian background
 - Black or Black British – African
 - Black or Black British – Caribbean
 - Black or Black British – any other Black background
 - Chinese
 - Gypsy/Roma
 - Mixed – White and Asian
 - Mixed – White and Black African
 - Mixed – White and Black Caribbean
 - Mixed – any other mixed background
 - Travellers of Irish Heritage
 - White British
 - White Irish
 - White – any other White background
 - Any other ethnic group
- **Free school meals** – indicate ‘yes’ or ‘no’
- **Special Educational Needs** – indicate ‘yes’ or ‘no’
- **English as an additional language** – indicate ‘yes’ or ‘no’

There are two further categories which you can customise according to your requirements. These are called ‘Custom 1’ and ‘Custom 2’. Suggestions for additional student-level information that could be included under Custom 1 or 2 are:

- **First language** (again limiting these to the ‘top 20’ spoken in school will make analysis more meaningful).
- **Additional learning needs breakdown** such as School Action and School Action Plus in England. If your school has special provision for children on the autistic spectrum or with speech and language disorders, for example, these categories could be highlighted. Again, it is recommended that only the 20 most common additional needs or fewer are included.
- **Postcode**, but use just the first part of the code otherwise there will be too many categories for meaningful analysis. So, for the code SL4 3QY, state SL4.

As the reports will cut off text entries in a cell after 65 characters, it is recommended that entries for fields are kept as succinct as possible, whilst still being meaningful.
Paper Edition

For customers taking the CAT4 paper tests, the information used for analysis is collected in the first instance by the Optical Mark Recognition (OMR) Answer Sheet completed by each student. When administering your CAT4 tests you should ensure each student completes the Answer Sheet correctly. Information is also collected from the Group Header Sheet which must accompany each batch of Answer Sheets. One Group Header Sheet should be submitted for each group for which a separate analysis is required.

Overprinting

To ensure accuracy of data, schools have the option of purchasing our overprinting service. This service delivers Answer Sheets pre-printed with the required information, saving valuable time on the day of the test and guaranteeing an efficient results delivery service. In addition, sourcing the data from your school management system will ensure that report analysis is as accurate as possible and allow the results to be easily transferred back into the system for use by teaching staff. To submit the information, the school uploads a data file containing the following student and school details to the Testwise Reporting Service (TRS):

- School DfE number
- School name
- Surname
- Forename
- Class
- Year
- UPN
- Gender
- Date of birth
- CAT4 test level
- Ethnicity
- Free school meals
- Special Educational Needs
- English as an additional language

A sample data file can be downloaded from the TRS website: https://reports.testwise.net/
Post-results analysis

Schools are encouraged to use the reports to carry out further analysis based on a full range of demographic information. If you have not used the overprinting service, it is possible to add information at student level for categories such as ethnicity, free school meals, Special Educational Needs and English as an additional language. By accessing their information on TRS, schools can update their information and re-run reports with this more detailed analysis.

There are further categories which you can customise according to your requirements. For suggestions of student-level information that could be included under these custom fields see the Digital Edition guidance on page 5.

For guidance on making your additional information as meaningful as possible to the analysis, see the Digital Edition guidance on pages 4–5. We recommend that paper users also follow these guidelines.
What CAT4 tells you

The four batteries of CAT4 assess a student’s ability to reason with different kinds of material and so provide information that is highly valuable for both understanding students’ strengths and diagnosing their learning needs.

What the four batteries assess

The Verbal Reasoning Battery assesses reasoning ability with words representing objects or concepts. The tests in this battery do not focus on physical properties of the words themselves, such as the alphabetical position of their first letters. Likewise, the Quantitative Reasoning Battery assesses reasoning with numbers, with the numbers representing the relevant numerical concept, rather than being used for their physical properties such as whether they consist of two digits or one. The Non-verbal Reasoning and Spatial Ability Batteries are somewhat different in that the shapes themselves are the focus of the assessment rather than the shapes symbolising something else.

Thinking with words

The Verbal Reasoning Battery necessarily requires some reading ability. However, CAT4 limits the reading requirements to a modest level throughout. The vocabulary demands of the Verbal Analogies and Verbal Classification tests have been kept as low as possible. Also, the background knowledge needed to answer the verbal questions is that which all students will have encountered in school or everyday life, rather than including topics that may only be familiar to certain socio-economic or cultural groups.

Consequently, scores on the Verbal Reasoning Battery will usually reflect students’ ability to use words as a medium of thought. The exceptions will be when students have poor reading skills or grew up apart from mainstream UK society.

It is also worth noting that all the instructions for the CAT4 batteries are presented orally to students, so any influence of reading skills is limited solely to the items in the Verbal Reasoning Battery.

Thinking with numbers

The Quantitative Reasoning Battery has been designed to be minimally reliant on mathematical knowledge. The Number Analogies test requires only basic arithmetical knowledge, and parallels the analogy tests in the Verbal and Non-verbal Reasoning Batteries. The Number Series test focuses as far as possible on the identification of relationships between the elements of the questions, though basic arithmetical knowledge is necessarily required too.
In this way, the Quantitative Reasoning Battery will give a genuine indication of most students’ ability to think with numbers, with the exception of children with particularly low arithmetic skills.

Thinking with shapes

The Non-verbal Reasoning Battery assesses the ability to think and reason with non-verbal material, that is to analyse figures made up of multiple elements, identify the relationships between these elements and identify further examples of these relationships. The Figure Matrices test parallels the analogies tests in the Verbal and Quantitative Reasoning Batteries. The Figure Classification test requires the identification of common elements between figures and parallels the Verbal Classification test.

Consequently, the Non-verbal Reasoning Battery reveals how well students can think when working with shapes. As these questions do not necessarily rely on highly developed verbal skills or the use of English for their solution, they can provide insight into the reasoning abilities of students with poor verbal skills or who are not particularly fluent in English.

Caution may need to be exercised when interpreting low scores if the student concerned comes from a non-Western cultural background, as he or she may not have experienced these types of activities before.

Thinking about shape and space

The Spatial Ability Battery assesses the ability to think in spatial terms, that is to visualise shapes and objects and the effects of manipulations on these. The Figure Analysis test requires the student to imagine the effect of a series of physical manipulations on a square of paper. This test relies on both spatial and reasoning abilities such as recognising that, if a hole is made through layers of a doubled-over sheet, there must be two holes when the sheet is unfolded. The Figure Recognition test requires the identification of a target shape within a complex design, so assessing the ability to identify a remembered shape from within more complex information.

As spatial tests make no demands on verbal ability, they can be highly effective indicators of potential in students with poor verbal skills as well as effectively identifying the weaker abilities of those who have verbal strengths. This then provides a more comprehensive picture of the students concerned.

As with the Non-verbal Reasoning Battery, caution needs to be exercised when interpreting low scores if students come from non-Western cultural backgrounds owing to their potential lack of familiarity with this type of activity.

The Non-verbal Reasoning Battery does not rely on high level verbal skills or English.

The Spatial Ability Battery tests can be highly effective indicators of potential in students with poor verbal skills.
Scores from CAT4

For each CAT4 test students obtain a **raw score** which indicates the number of questions they answered correctly.

These raw scores are interpreted by comparing them to the performance of other students of the same chronological age group using what are referred to as ‘normative scores’. Three types of normative score are provided for the interpretation of performance: Standard Age Scores (SAS), National Percentile Rank (NPR) by age and stanines (ST) by age.

- **Standard Age Scores (SAS):** These are presented on a standardised score scale where the average for each age group is set to 100 and the standard deviation set to 15.² This means that a student who gains the same SAS on two different batteries has done equally well on both, compared to others of the same age. It also means that students of different ages who have the same SAS have done equally well when judged in relation to others of their own age.

- **National Percentile Rank (NPR):** This indicates the proportion of students of the same age who have scored the same as or below the student in question. For example, a student who achieves a percentile rank of 84 has scored equal to or better than 84 per cent of students in the same age band; only approximately 16 per cent of students achieved a higher score on this test.

- **Stanines (ST):** This is a standardised score scale divided into nine bands. In a stanine scale the scores are grouped as shown in the table below. Stanines are particularly useful when reporting tests results to students and parents as they are relatively easy to understand and interpret. They also avoid the erroneous impression of being ‘IQ scores’, sometimes attributed to SAS.

<table>
<thead>
<tr>
<th>The Stanine Scale</th>
<th>Stanine</th>
<th>Percentage of cases</th>
<th>Corresponding percentiles</th>
<th>Corresponding SAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very high</td>
<td>9</td>
<td>4%</td>
<td>97 and above</td>
<td>127 and above</td>
</tr>
<tr>
<td>Above average</td>
<td>8</td>
<td>7%</td>
<td>90–96</td>
<td>119–126</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>12%</td>
<td>78–89</td>
<td>112–118</td>
</tr>
<tr>
<td>Average</td>
<td>6</td>
<td>17%</td>
<td>59–77</td>
<td>104–111</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>20%</td>
<td>41–58</td>
<td>97–103</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>17%</td>
<td>23–40</td>
<td>89–96</td>
</tr>
<tr>
<td>Below average</td>
<td>3</td>
<td>12%</td>
<td>12–22</td>
<td>82–88</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7%</td>
<td>5–11</td>
<td>74–81</td>
</tr>
<tr>
<td>Very low</td>
<td>1</td>
<td>4%</td>
<td>4 and below</td>
<td>73 and below</td>
</tr>
</tbody>
</table>

² This means that approximately 68 per cent of students in the norm group for that age scored between 85 and 115, approximately 95 per cent scored between 70 and 130, and over 99 per cent scored between 60 and 140, the limits of the CAT4 SAS.
Relationship between CAT4 scores

The relationship between the three types of normative score is shown below, along with the normal distribution curve which illustrates the distribution of test performance in each age range.

Figure 1: Relationship between scores

<table>
<thead>
<tr>
<th>Description</th>
<th>Very Low</th>
<th>Below Average</th>
<th>Average</th>
<th>Above Average</th>
<th>Very High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanine (ST)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Standard Age Score (SAS)</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>National Percentile Rank (NPR)</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

Figure 2: Normal distribution curve

Low or unreliable scores

If a student’s score on any one of the batteries is very low, it should be regarded with caution.

Before interpreting an individual student’s score on any of the CAT4 reports, scan the report and find the number of questions attempted. This will show if a student has left a large number of questions unanswered on any of the batteries, or if his or her score is close to that expected from random guessing.

If all or nearly all of the questions have been attempted, then random guessing will result in raw scores at the ‘chance level’ shown in the table on the next page. If fewer questions have been attempted then random guessing will, on average, result in a raw score of around one-fifth of the number of questions attempted.

Examples of low and potentially unreliable scores are illustrated in the case studies found in this pack.
This table shows chance levels of performance and these should be used to identify any students whose scores should be looked at more closely.

If the raw score is the same as or lower than the chance level given for the battery, then caution should be exercised in interpreting the score.

<table>
<thead>
<tr>
<th>Battery</th>
<th>Maximum raw score</th>
<th>Chance raw score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbal Reasoning Battery</td>
<td>48</td>
<td>10</td>
</tr>
<tr>
<td>Quantitative Reasoning Battery</td>
<td>36</td>
<td>7</td>
</tr>
<tr>
<td>Non-verbal Reasoning Battery</td>
<td>48</td>
<td>10</td>
</tr>
<tr>
<td>Spatial Ability Battery</td>
<td>36</td>
<td>7</td>
</tr>
</tbody>
</table>

Any student who omits a large number of questions, or answers most of the questions but gets few of them right, is probably functioning at a low level in the cognitive area being tested. In either case, the student’s score cannot be relied upon with confidence. Although these scores might actually represent the true level of the student’s abilities at the time of testing, a better view of what the student can do might be obtained by retesting with CAT4 after a gap of at least six months – consider assessing the student with a series of tests that look at ability, processing and attainment which might point to a specific learning difficulty; or seek outside support from an educational psychologist who can carry out a specialist assessment.
CAT4 reports

A range of CAT4 reports has been developed following extensive market research and feedback on CAT3, to ensure that new reports are clearly focused on specific audiences. At the time of release of CAT4, the following reports will be available:

<table>
<thead>
<tr>
<th>Report</th>
<th>Summary of contents</th>
</tr>
</thead>
</table>
| **Group report for teachers** | • A description of the assessment, overview of its benefits, example questions and a useful reminder of how scores are reported
 • Table of scores for all students in your group, showing the SAS and group ranking for each battery plus overall mean scores
 • Analysis of your group scores compared to the national average
 • Profile chart and listings indicating the learning preferences for all students in your group, with supporting explanation
 • Indicators of future attainment in national tests/examinations |
| **Individual report for teachers** | • A description of the assessment, overview of its benefits, example questions and a useful reminder of how scores are reported
 • Detailed breakdown of scores for each student, including the SAS with confidence bands, National Percentile Rank, stanines and group ranking
 • Profile description for each student indicating their learning preference, with written implications for teaching and learning also given which help to ensure a student achieves their potential
 • Indicators of future attainment in national tests/examinations |
| **Individual report for students** | • An explanation of the assessment, overview of why it is used and benefits for students
 • Student-friendly overview of performance scores across the four batteries
 • Profile description with written recommendations to help improve student understanding and support effective learning
 • Indicators of future attainment in national tests/examinations with supporting chart for ease of comparison across subject areas |
| **Individual report for parents** | • An explanation of the assessment, overview of why it is used and example questions to ensure parents are informed
 • Parent-friendly overview of performance scores across the four batteries
 • Profile description with written recommendations to help improve parent understanding of their child’s learning preference, with suggestions for how to offer support at home
 • Indicators of future attainment in national tests/examinations with supporting chart for ease of comparison across subject areas |
| **Summary report for senior leaders** | • A description of the assessment, overview of its benefits and a useful reminder of how scores are reported
 • Detailed analysis of your cohort/group scores compared to the national average, with analysis by battery, gender and ethnicity, and further options available as specified
 • Profile chart indicating the learning preferences for all students in the cohort/group, with supporting explanation
 • Summary indicators of future attainment for the full cohort/group
 • Note, a **Summary presentation for senior leaders** is also available in PowerPoint® format, ideal for sharing key findings with a wider audience |
A CSV or Excel report which gives all raw/core data is available and will enable further analysis of results. A cluster report is available, based on the Summary report for senior leaders, which brings together the results from more than one school or an entire local authority, as required.

Further reports are under development and will include those to help teachers working with students with additional needs or with very able students as well as subject leaders. As soon as these reports are available, samples will be posted on the CAT4 website.

The CAT4 student profile

New in CAT4 is a profile of a student’s learning bias or preference based on a comparison of scores obtained on the Verbal Reasoning and Spatial Ability Batteries.

What is shown may not be a preference or bias that is observed or used in the classroom. Rather it suggests an underlying bias towards learning in a particular way or a way that combines different skills, which draws on strengths demonstrated in results from CAT4.

Verbal and spatial abilities may be seen as extremes on a continuum of ability (with numerical and non-verbal abilities representing a combination of these two extremes in differing degrees). The CAT4 profile contrasts the extremes using the stanine score as the most relevant measure and factors in the level of ability displayed in each area.

This results in a profile for each student in one of the follow seven categories:

- Extreme verbal bias
- Moderate verbal bias
- Mild verbal bias
- No bias
- Mild spatial bias
- Moderate spatial bias
- Extreme spatial bias

New report samples will be posted on the CAT4 website.
In Figure 3 extracted from the *Group report for teachers*, each student is plotted on a colour-coded grid to show the distribution for the group across the seven categories. The majority of students will be in the ‘no bias’ category. Ability is indicated by the line from lower to higher ability that transects the grid, so that level of ability as well as profile type is shown. There follows a listing of students in each profile category and a brief description of each category (see Figure 7 for an example of this).

In Figure 4 extracted from the *Individual report for teachers* the student’s profile is plotted on the grid as an immediate visual aid to assessing both level of ability and profile type. This is followed by a more detailed narrative analysis of the profile and some implications for teaching and learning. Both these narratives take into account both the balance of the...
profile (that is the relative strengths and weaknesses demonstrated by scores from the Verbal Reasoning and Spatial Ability Batteries) and the level of ability.

For users familiar with CAT3 this is a further refinement of the cognitive strengths and weaknesses report made possible by the addition of the fourth battery in CAT4 for Spatial Ability.

For a student to be included in the group analysis by profile category and to receive the graphical and narrative sections of the Individual report for teachers, both the Verbal Reasoning and Spatial Ability Batteries must be administered. Likewise, the Individual report for students and Individual report for parents will be cut short and compromised if these parts of CAT4 have been omitted.

Communicating CAT4 results

Teachers have told us that it is often difficult to find the time and opportunity to explain CAT results to teaching colleagues. They fear this may seem burdensome or imply that additional work needs to be done. The development of new and refined reports for CAT4, including the individual narrative, makes this process easier and enables teachers and students to benefit from the additional information and recommendations arising from the testing process.

Students, parents, governors and other professionals involved in supporting children may also find an understanding of CAT4 results helpful. Again, CAT4 includes new reports aimed at the student and parent or carer and a summary report and PowerPoint® presentation that will help disseminate information to colleagues and governors.

However, the use of reports can be further enhanced by knowledgeable users discussing CAT4 results and, in doing so, ensuring that the key messages are tailored to the audience so that everyone has a clear understanding of the results and their implications.

Successful communication of CAT4 results has a number of common elements, whatever the audience. These are outlined below.

Build on existing knowledge and understanding

For communication to be successful it must build on the listener’s current understanding of assessment generally and CAT4 results in particular. Although it may be true that teachers and other educational professionals will, on average, have a greater understanding of assessment than other groups such as parents, this will not always be the case. Some teachers, especially if new to the profession, may have a limited understanding of assessment whereas some parents, for example, may be extremely knowledgeable. The key point is that communication must be tailored to the recipient’s current level of understanding of CAT4, and so it should not be assumed that certain groups will have sufficient understanding whereas others will not.
Always check out the particular person’s understanding before communicating results.

Sometimes it may be necessary to give a brief explanation of CAT4 and its use before results can be meaningfully understood and applied. Brief introductory text has been added to many of the CAT4 reports to help with this. Such an explanation may be needed during a discussion of results with an individual or small group.

If results are regularly used across a whole school in a way that has a marked impact on teaching and learning, it will be important for all recipients of results to have a good working knowledge of CAT4. Under these circumstances it may be appropriate to provide whole school briefings. The Summary presentation for senior leaders is output as a PowerPoint® presentation that gives an overview of results from the current round of testing.

Clear and appropriate communication

Having established the recipients’ level of understanding, information must be communicated clearly and succinctly, in a way that builds on their current level of knowledge. Consider how communication will take place – in writing, orally or a combination of the two – and what support may be needed for this to be effective.

CAT4 reports include combinations of visual, numerical and textual information. It is likely that certain elements of the reports will appeal to, and be more readily understood by, some people than others. For example, some people will instantly pick up meaning from a graph but may struggle to make sense of the table of data on which the graph is based. As a communicator, varying the style in which you convey test results, by building on what listeners find most intuitive and using this to support understanding of those areas that are less intuitive, is a valuable skill.

A further point to consider is the amount of information that it is necessary to convey. The CAT4 reports have been developed for particular purposes and so contain selected information considered to be most appropriate for those purposes. So, detailed group reports may contain more information than is needed for some purposes. In these cases, match the information to the listeners’ needs and make sure that it is communicated clearly. Where more detailed reports are being used, point out what information should be of most use to them and make sure they know how to interpret it.

Checking understanding and clarifying actions

It is important to ensure that communication is a genuine dialogue. Particularly when new to CAT4 results, recipients are likely to have many questions and need the opportunity to absorb the information and ask their questions. Some people may need time to understand fully the implications of CAT4 results and consider what they mean in terms of teaching and support for individual students, classes or whole year groups.

A short generic overview that may be used to introduce the test to colleagues, parents and other interested parties is given on the CAT4 website at www.cat4support.com.
It is useful to check understanding and clarify actions after communicating results. Listening carefully to the recipients’ understanding of what they have heard is a good way of checking that information has been understood. Opportunities for follow-up and further discussion of CAT4 results may also be necessary. Implementing results may lead to further questions and the wish to explore applications of CAT4 in more depth.

Communicating CAT4 results to specific groups

Communicating results to students

CAT4 is a test for which students do not need to prepare. It is important that the test sessions should be an integral part of the timetable to avoid undue anxiety in students. Older students may want to know what CAT4 is about. It is a well-known test and there may be misinformation circulating about why students are being tested and how results are used. A short explanation – that CAT4 is an assessment of ability in four different areas and has no direct connection to the curriculum, so it cannot be prepared for – and reassurance that results will be used to understand better how students learn will help to put students’ minds at rest.

Whatever their scores, it is important for all students to understand that the information gained from CAT4 testing can form the basis of plans for their future development, which they themselves can take some control over. No matter what the outcomes of the CAT4 tests, students should be encouraged to think positively about their results. Instead of reporting normative scores, reports about individual students present the student’s relative performance on the four CAT4 batteries. Scores on the four batteries are presented so students can see in which of the four reasoning areas they are strongest or weakest. This style of reporting is used for all students, no matter what their normative scores and overall level of reasoning ability. These reports also include additional narrative describing their profile and giving them ideas to further their learning according to the scores obtained.

Therefore, it is recommended that this approach of presenting relative strengths and weaknesses is also followed when discussing results with students. Students, no matter what their overall level of performance on CAT4, should be clear about their areas of strength and supported in understanding how they can build on these. This is not to say that areas of weakness should be downplayed. Students should be clear about the areas where they need to develop further and have appropriate expectations about their future performance in school. Students should be encouraged to contribute to their own development targets, being supported as appropriate to set challenging yet attainable targets.

Checking that students have understood their results and the implications of these results is important, particularly for those with lower CAT4 results. It is essential that every student, whatever their ability, should take some positives away from a discussion of their CAT4 results.
Communicating results to teachers

In most schools, arranging the CAT4 testing sessions and reviewing and implementing results will be the responsibility of a single senior teacher or a small team of colleagues.

Raising awareness of the benefits of CAT4 may not always be straightforward, but we know that teachers want to support students as individuals. CAT4 is an aid to doing this and need not imply additional workload.

The Group report for teachers will help in communicating results and, importantly, details of learning biases among students in different teaching groups. This may allow those with similar or contrasting profiles to be taught together with mutual benefits. The narrative that is now part of the Individual report for teachers includes implications for teaching and learning which offer brief insights into how different levels of ability combined with learning preferences may affect a student’s learning. It is hoped that simple adjustments based on CAT4 results and other information about the student can improve outcomes.

One of the main uses of CAT4 is to help teachers understand the potential and the learning needs of students and so differentiate their teaching methods accordingly. The full pattern of results from CAT4 needs to be considered, as abilities will work in interaction with each other and not in isolation. Differentiation of teaching methods can then be achieved in a way that draws on students’ strengths and, through these, supports weaker areas.

Communicating results to parents

Some parents will know about CAT4 but what they know may be based on misinformation. If the school wishes to inform parents about the CAT4 testing process, a sample letter can be found in Appendix B as a guide to what might be included. There is also a sample letter for post-testing purposes in Appendix B.

Many parents will naturally be interested in all aspects of their child’s performance at school, including their CAT4 results. The CAT4 reports have been developed to support the routine reporting of results to parents. As parents play an important role in their child’s development outside of school, these reports also include narrative text that will help parents understand their child’s profile of results and what they can do to further their learning. The Individual report for parents includes a short description of CAT4, results on each battery (expressed as ‘below average’, ‘average’ and ‘above average’) and indicators of future attainment based on the results. A short description of how these indicators are derived and what they mean has also been included.

As with the communication of results to students, there is no single best or right way of doing this, but it is recommended that the report is discussed with parents rather than simply being sent to them. Even though the reports have been written for a parent audience, discussing results with parents will ensure that the content is understood accurately. The reports can also be used as a focus for further exploration of
strengths and learning needs with parents and as a way of engaging parents in actions they can take at home. In this way, CAT4 can be used as an effective tool for reinforcing school-based learning activities in the home.

Communicating results to other professionals

CAT4 results can be relevant to a range of other professionals who are involved with students’ welfare and development. Some colleagues may have a limited knowledge of testing and so the introductory text that forms part of the new reports will be useful in giving a quick overview and an example of the test material in CAT4.

Information from any test is most meaningful when it is communicated as part of a broader assessment of a student, rather than in isolation. In any such communication it is important to distinguish between what can be considered as ‘fact’ or ‘opinion’. The CAT4 results provide factual information on the student’s level of reasoning ability across the four batteries at the time of testing. Opinions, in this case, are the professional judgements that teachers and others who know the student may make, given an understanding of their CAT4 results plus other information. Although both facts and opinion can be equally valid, in some circumstances it will be important to make a clear distinction between the two.

CAT4 scores of individual students

When communicating the results of individual students, there are further important things to bear in mind.

- CAT4 results should not be presented in isolation. Test results are a ‘snapshot’ of performance at one point in time and only give one view of the student’s performance. Thorough assessment is a continuous process that draws on many sources of evidence. Results should always be considered in conjunction with reports of attainment in specific subjects and teacher assessments, along with feedback on the engagement, motivation and effort made by the student.

- Any misconceptions of CAT4 being a measure of fixed ability should be challenged. Like physical abilities, cognitive abilities can be developed through experience and practice. However, having an aptitude for a particular sport will influence performance and, in the same way, a preference for one type of reasoning ability is likely to support greater attainment in that particular area.
• Low CAT4 scores should never be used to put a ceiling on expectations of what the student can achieve, particularly if the student comes from an economically or socially disadvantaged background, or a non-Western background which may mean they are not sufficiently familiar with the test content to obtain a reliable assessment of their abilities. Rather, results should be used as the basis for planning activities and a learning programme that is aimed at improving all students’ reasoning abilities alongside their attainment in curriculum subjects.

The case studies in this pack illustrate the interpretation, communication and application of CAT4 results.
All reports included in this section come from CAT4 Level D.

Figure 5: Scores for the group from *Group report for teachers*

Figure 6: Student profiles from *Group report for teachers*

Figure 7: Student profile characteristics from *Group report for teachers*

Figure 8: KS3 indicators from *Group report for teachers*

Figure 9: Group analysis (by battery) from *Summary report for senior leaders*

Figure 10: Distribution of scores (by English as an additional language) from *Summary report for senior leaders*

Figure 11: Individual scores from *Individual report for teachers*

Figure 12: KS3 indicators from *Individual report for teachers*

Figure 13: Individual scores from *Individual report for students*

Figure 14: GCSE indicators from *Individual report for students*

Figure 15: Introduction from *Individual report for parents*

Figure 16: Standard Grade indicators from *Individual report for parents*
Figure 5: Scores for the group from Group report for teachers

Scores for the group (by overall mean SAS)

<table>
<thead>
<tr>
<th>Student name</th>
<th>Verbal</th>
<th>Spatial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SAS (100)</td>
<td>SAS (100)</td>
</tr>
<tr>
<td></td>
<td>(GR)</td>
<td>(GR)</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>(GR)</td>
<td>(GR)</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>SD</td>
</tr>
</tbody>
</table>

The Student Age Score (SAS) is based on the student’s raw score which has been adjusted for age and placed on a scale that enables comparison with a nationally representative sample of students of the same age across the UK. The average score is 100.

Group Rank (GR) shows how each student has performed in comparison to those in the defined group. The number of questions (Q) attempted can be important: a student who has worked very slowly but accurately and not finished the test will have a low GR.

Figure 6: Student profiles from Group report for teachers

The analysis of CAT4 scores allows all students to be assigned a profile, that is they are assigned to one of seven broad descriptions of their preference for learning. The Verbal Reasoning and Spatial Ability Batteries form the basis of this analysis and the profiles are expressed as mild, moderate or extreme bias for verbal or spatial learning or, where no bias is discernable (that is, when scores on both batteries are similar), as an even profile.

The diagram shows the distribution of students across the seven profiles which are indicated by the coloured bands.

- Extreme verbal bias
- Moderate verbal bias
- Mild verbal bias
- No bias
- Mild spatial bias
- Moderate spatial bias
- Extreme spatial bias
- Males
- Females
Figure 7: Student profile characteristics from Group report for teachers

General characteristics of each student profile

It may be helpful to consider which students fall into which broad profile, but this information must be treated with caution as the descriptors are general and not individualised: students’ preferences for learning will be influenced by other factors. The CAT4 Individual report for teachers offers more fine detail.

<table>
<thead>
<tr>
<th>National</th>
<th>Group</th>
<th>No. of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extreme verbal bias</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Moderate verbal bias</td>
<td>4%</td>
<td>5%</td>
</tr>
<tr>
<td>Mild verbal bias</td>
<td>8%</td>
<td>8%</td>
</tr>
<tr>
<td>No bias or even profile</td>
<td>40%</td>
<td>47%</td>
</tr>
<tr>
<td>Mild spatial bias</td>
<td>4%</td>
<td>12%</td>
</tr>
<tr>
<td>Extreme spatial bias</td>
<td>2%</td>
<td>2%</td>
</tr>
</tbody>
</table>

Extreme verbal bias
- These students should excel in written work and should enjoy discussion and debate.
- They should prefer to learn through reading, writing and may be very competent independent learners.
- They are likely to be high achievers in subjects that require good verbal skills such as English, modern foreign languages and humanities.
- They may prefer to learn step-by-step, building on prior knowledge, as their spatial skills are relatively weaker, being in the low average or below average range.

Students:
Max Hitchens
Swehta Manuah Sytsri Knosirro M

Moderate verbal bias
- Students in this group will have average to high scores for Verbal Reasoning and relatively weaker Spatial Ability with scores in the average range.
- These students are likely to prefer learning through reading, writing and discussion.
- Step-by-step learning, which builds on prior knowledge incrementally, is likely to suit these students.

Students:
Zaynab Ashfaiq
Nick Watt
Khan Kareena
Petya Kan
Gabriel Bester
Paisley McSeveney
Anthony Jameson
Mia Shimizu
Lara Sandford
Jenny Coyle
Sara Shafiq

Mild verbal bias
- Some students with this profile will have low average or below average scores for Verbal Reasoning and relatively weaker Spatial Ability, but the gap between scores will be narrow.
- A slight bias for learning through reading, writing and discussion may be discerned in the students in this group.

Students:
Niamh Ernst
Jhulan Hallas
Nesrein Mawake
Nick Will

Figure 8: KS3 indicators from Group report for teachers

KS3 Indicators

There has always been a significant and positive correlation (that is, a link which is supported by statistical data) between a student’s scores on reasoning tests such as CAT4 and his or her performance in national tests and examinations. CAT4 provides a range of indicators of future attainment which can form the basis of discussion with an individual about targets for learning or help set realistic but challenging targets for national tests and examinations.

External factors will affect a student’s eventual attainment – not least effort and motivation – but CAT4 results demonstrate what can be achieved because the test is established as a good predictor of subsequent attainment.

CAT4 scores and subsequent KS3 results (or teacher assessments) are collected from a large sample of schools and students. The KS3 indicators are derived from the statistical relationship between CAT4 scores and the end of KS3 results. The indicators are updated regularly to reflect changes in national KS3 attainment. Indicators for maths and science have been derived from the mean CAT4 Standard Age Score (SAS). The SAS for Verbal Reasoning has been found to give more accurate results for English so, when applicable, this is used as the basis for the indicators for English. Should scores for one or more batteries be missing, indicators will be based on scores for those batteries administered to the student.

The indicators in this report are shown as National Curriculum levels.
Guidance on scoring and reporting results

Figure 9: Group analysis (by battery) from Summary report for senior leaders

Table: Group analysis (by battery)

<table>
<thead>
<tr>
<th>Battery</th>
<th>Mean SAS</th>
<th>Non-verbal mean SAS</th>
<th>Spatial mean SAS</th>
<th>Overall mean SAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>National average</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>All students</td>
<td>100.6</td>
<td>99.2</td>
<td>98.7</td>
<td>101.6</td>
</tr>
<tr>
<td>90% confidence band</td>
<td>98.0–103.2</td>
<td>96.8–101.5</td>
<td>95.8–101.6</td>
<td>97.9–102.2</td>
</tr>
</tbody>
</table>

Table: Distribution of scores for all students (by battery) compared with those for the national sample

<table>
<thead>
<tr>
<th>Description</th>
<th>Very low</th>
<th>Below average</th>
<th>Average</th>
<th>Above average</th>
<th>Very high</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbal</td>
<td>0%</td>
<td>7%</td>
<td>3%</td>
<td>30%</td>
<td>23%</td>
</tr>
<tr>
<td>Quantitative</td>
<td>2%</td>
<td>3%</td>
<td>7%</td>
<td>33%</td>
<td>28%</td>
</tr>
<tr>
<td>Non-verbal</td>
<td>5%</td>
<td>7%</td>
<td>8%</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>Spatial</td>
<td>2%</td>
<td>7%</td>
<td>8%</td>
<td>12%</td>
<td>8%</td>
</tr>
</tbody>
</table>

Figure 10: Distribution of scores (by English as an additional language) from Summary report for senior leaders

Distribution of Verbal scores (by English as an additional language)

Distribution of Quantitative scores (by English as an additional language)

Distribution of Non-verbal scores (by English as an additional language)

Distribution of Spatial scores (by English as an additional language)
Profile summary

The analysis of CAT4 scores allows all students to be assigned a profile; that is they are assigned to one of seven broad descriptions of their preferences for learning. The Verbal Reasoning and Spatial Ability Batteries form the basis of this analysis and the profiles are expressed as a mild, moderate or extreme bias for verbal or spatial learning or, where no bias is discernable (that is, when scores on both batteries are similar), as an even profile.

The black diamond shows Peter’s profile, which is indicated by the coloured band.

KS3 indicators

Results from CAT4 can give an indication of the level a student will reach at the end of the next Key Stage. A second level is suggested – this is the level a student could reach with additional effort and challenge. This information is helpful when you discuss with your students the targets they should be working towards.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Most likely level reached</th>
<th>Most likely level reached for student with additional effort and challenge</th>
<th>Probability of student obtaining level 5 or higher</th>
<th>Probability of student obtaining level 6 or higher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maths</td>
<td>6a</td>
<td>6b</td>
<td>1%</td>
<td>10%</td>
</tr>
<tr>
<td>Art</td>
<td>6a</td>
<td>6b</td>
<td>10%</td>
<td>30%</td>
</tr>
<tr>
<td>Sci</td>
<td>6a</td>
<td>6b</td>
<td>52%</td>
<td>81%</td>
</tr>
<tr>
<td>Geography</td>
<td>6a</td>
<td>6b</td>
<td>5%</td>
<td>45%</td>
</tr>
<tr>
<td>Geography</td>
<td>6a</td>
<td>6b</td>
<td>51%</td>
<td>81%</td>
</tr>
<tr>
<td>History</td>
<td>6a</td>
<td>6b</td>
<td>8%</td>
<td>52%</td>
</tr>
<tr>
<td>ICT</td>
<td>6a</td>
<td>6b</td>
<td>58%</td>
<td>81%</td>
</tr>
<tr>
<td>PE</td>
<td>6a</td>
<td>6b</td>
<td>21%</td>
<td>81%</td>
</tr>
<tr>
<td>Science</td>
<td>6a</td>
<td>6b</td>
<td>52%</td>
<td>81%</td>
</tr>
<tr>
<td>English</td>
<td>6a</td>
<td>6b</td>
<td>52%</td>
<td>81%</td>
</tr>
<tr>
<td>MFL</td>
<td>5b</td>
<td>6a</td>
<td>6%</td>
<td>14%</td>
</tr>
<tr>
<td>Music</td>
<td>5b</td>
<td>6a</td>
<td>1%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Scores

<table>
<thead>
<tr>
<th>Battery</th>
<th>No. of questions attempted</th>
<th>SAS (with 90% confidence bands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbal</td>
<td>48/48</td>
<td>95</td>
</tr>
<tr>
<td>Quantitative</td>
<td>32/36</td>
<td>98</td>
</tr>
<tr>
<td>Non-verbal</td>
<td>48/48</td>
<td>109</td>
</tr>
<tr>
<td>Spatial</td>
<td>36/36</td>
<td>106</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>102</td>
</tr>
</tbody>
</table>
Guidance on scoring and reporting results

Name: Peter Adetunde
School: Test School
Group: Year 7
Date of test: 13/09/2011
Level: D
Age: 11:01
Sex: Male

Scores

<table>
<thead>
<tr>
<th></th>
<th>Below average</th>
<th>Average</th>
<th>Above average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantitative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-verbal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spatial</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary

Your profile of scores from CAT4 suggests you may have a slight preference for learning by using pictures, diagrams and other visual ways of learning rather than by reading, writing and discussion:

- You may prefer learning that uses visual clues. If so, make sure you use online resources, videos and tests with plenty of pictures that will help you remember key facts and information.
- Use your stronger spatial skills to help across the range of subjects. For example, use mind maps as an aid to remembering key events and characters in a text in English and annotate text to reinforce key facts and information in science. You may find some of your schoolwork challenging, particularly if it involves lots of reading and writing.
- Make sure you understand what you are learning, step-by-step, as it is important that you learn at a pace that is right for you.
- Always ask your teacher to explain anything that is not clear. If you don’t understand the meaning of a key word in a lesson, do ask.

Figure 13: Individual scores from Individual report for students

Figure 14: GCSE indicators from Individual report for students

Copyright © 2012 GL Assessment Limited
Figure 15: Introduction from Individual report for parents

CAT4 Individual report for parents

Name: Peter Adetunde
School: Test School
Group: Year 7
Date of test: 13/09/2011
Level: D
Age: 11:01
Sex: Male

What is CAT4?

Your child has taken the Cognitive Abilities Test Fourth Edition (CAT4) which assesses how well a student can think about tasks and solve problems using a range of different questions. Some tasks involved thinking about shapes and patterns (Non-verbal Reasoning), some with words (Verbal Reasoning) or numbers (Quantitative Reasoning) and, finally, some questions were answered by thinking about shape and space together and imagining a shape being changed and moving (Spatial Ability).

Why use CAT4?

- CAT4 is used in many schools across the UK to provide information to teachers, students and parents that, with other information such as results from Key Stage 2 tests, forms the basis for discussion about how best an individual can learn and reach his or her potential in school.
- CAT4 does not require any prior knowledge and you cannot ‘learn’ how to answer the questions in CAT4. It is therefore a good test because everyone starts at the same place.
- The abilities tested in CAT4, such as spatial ability, may be difficult to demonstrate in the classroom so it is important that teachers know the level of a student’s ability in such areas.
- CAT4 contributes to setting targets (for example, levels expected at the end of the next Key Stage or grades at GCSE) and allows an individual’s progress to be monitored.
- CAT4 results will help your teachers decide about the pace of learning that is right for an individual and whether additional support or challenge is needed.
- CAT4, unlike an English or maths test, is not a test of what the student has learned. It tests how an individual can think in areas that are known to make a difference to learning and achievement.

Figure 16: Standard Grade indicators from Individual report for parents

Indicators for Standard Grade

<table>
<thead>
<tr>
<th>Subject</th>
<th>Most likely grade achieved</th>
<th>‘If challenged’ grade achieved</th>
<th>Standard grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Music</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Art & Design</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>2/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Craft & Design</td>
<td>2/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drama</td>
<td>2/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>French</td>
<td>2/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home Economics</td>
<td>2/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modern Studies</td>
<td>2/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VL</td>
<td>2/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social & Vocational Studies</td>
<td>2/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administration</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business Management</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computing Studies</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geography</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English Communications</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Religious Studies</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spanish</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accounting & Finance</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>French</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maths</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Studies</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The short case studies in this section show how CAT4 is used in schools with both groups and individual students. The cases are drawn from the very large number of schools that took part in the standardisation of CAT4 and then received full reports based on the published data.

An overview of how CAT4 may be used to look at groups of students plus some contrasting individual profiles are given in the case studies for two secondary schools. The primary school case study (Case study 3) incorporates some issues schools may want to consider when testing children for whom English is an additional language. It also describes three students who have similar profiles but where contextual information plays an important part.
Background

This case study is taken from a mixed 11 to 18 comprehensive school in central England. It is a Specialist Science and Language College and also a training school. The school roll is currently around 1,700, with this expected to increase to around 1,900 in the near future. The school places a strong emphasis on both the academic and personal development of its students. Its academic results have been consistently high and, in 2008, it was awarded an Ofsted ‘outstanding’ rating.

The school is ethnically very diverse with around 40% of students from minority ethnic backgrounds. This is a much higher proportion than normal for the area and is largely due to it being the only faith school in the area, so it attracts a large number of students from Eastern European backgrounds. The school has a lower than average percentage of students entitled to free school meals, although students come from a wide range of social and economic backgrounds.

Use of CAT4

CAT is given to all Year 7 students in their first week at school. The Head of Learning Support explained the importance of getting CAT results back as soon as possible, so that she can use them as part of the identification of students with specific support needs and also ‘gifted and talented’ students.

CAT results are not currently sent to all teachers, but results are reviewed by the Head of Learning Support and used to identify the following students:

- **The lowest scoring students in each year group (in conjunction with information from feeder schools):** These students enter a small class of around ten students where they are given intensive support. This class has a single teacher for around 50% of the time, and so replicates the feel of a primary school in some respects. Depending on progress, students may move out of this class into the mainstream classes, although others may remain in the class for the duration of their time at school.

- **Students with stanine scores of 1 or 2 on the Verbal Reasoning Battery who may have reading difficulties:** These students are then screened using a reading test that produces further diagnostic information about their reading abilities. Where further testing reveals that students do need support in their reading, a plan for this is then put in place. There is currently discussion about whether the range of verbal scores used to identify students for further screening should be extended to stanines of 3 and below.1

1 Recommendations contained in the Individual report for teachers are that a stanine score of 3 or below on the Verbal Reasoning Battery should trigger an assessment of a student’s reading.
• The lowest attaining students at the point of entry to the school, based on those reported as operating below Level 2 by the feeder school and their CAT results: These students are enrolled on a programme of intense literacy support and are not entered to study a foreign language.

• Any students with a SAS of less than 90 for the Quantitative Reasoning Battery: These students are made known to the Head of Maths. In evaluating students’ needs in the area of mathematics, CAT results are integrated with the results from other assessments, but they do serve as an early indicator of students who may need additional support.

In addition, KS2 and CAT results are used together to set KS4 (GCSE) attainment targets for all students. Government targets specify that three levels of progress are expected between KS2 and KS4. In accordance with the school’s ethos to support children in achieving at their very best, more challenging targets are set that represent four levels of progress from Year 7 to GCSE.

Sometimes KS2 data can be inaccurate if a student was not entered for the Year 6 SATs. A teacher-assessed level is often submitted instead. If this is the case, the school tends to start these students at NC Level 1 as a baseline at Year 7 and adjust accordingly once subject assessments have been completed. The CAT data are also used as they give the school an overview of the student’s strengths and weaknesses. This is then cross-referenced with subject assessments – for example, a high score on the Quantitative Reasoning Battery should indicate that the student will be in a higher maths set.

If there is a discrepancy between KS2 and CAT data the school tends to give more weight to the KS2 score as this reflects acquired learning over time rather than a ‘snapshot’ of what they did on the day.

Detailed examples of how the school uses CAT results for individual students are given below.

1. Example of strong spatial and non-verbal abilities

Daniel is a student with English as his first language. He reached the expected age milestones and, by the end of KS2, excelled in maths and science. His literacy, however, has always needed additional support as he has had an ongoing hearing problem (‘glue ear’). Daniel’s strengths lie in his visual learning as he has had to develop this to compensate for his earlier difficulty with hearing. Although he is now within the average range for literacy, Daniel works better when information is presented visually.
Daniel’s CAT4 scores are:

<table>
<thead>
<tr>
<th>Battery</th>
<th>No. of questions attempted</th>
<th>SAS</th>
<th>NPR</th>
<th>ST</th>
<th>GR ((\sqrt{2}))</th>
<th>SAS (with 90% confidence bands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbal</td>
<td>48/48</td>
<td>97</td>
<td>42</td>
<td>5</td>
<td>2</td>
<td>[60, 140]</td>
</tr>
<tr>
<td>Quantitative</td>
<td>36/36</td>
<td>105</td>
<td>63</td>
<td>6</td>
<td>2</td>
<td>[60, 140]</td>
</tr>
<tr>
<td>Non-verbal</td>
<td>47/48</td>
<td>121</td>
<td>92</td>
<td>8</td>
<td>1</td>
<td>[60, 140]</td>
</tr>
<tr>
<td>Spatial</td>
<td>36/36</td>
<td>129</td>
<td>97</td>
<td>9</td>
<td>1</td>
<td>[60, 140]</td>
</tr>
<tr>
<td>Mean</td>
<td>-</td>
<td>113</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>[60, 140]</td>
</tr>
</tbody>
</table>

Daniel’s table of results shows that he completed all questions on each of the CAT4 batteries, with the exception of the Non-verbal Reasoning Battery where just one of the 48 questions was not answered. Given this, and that all his raw scores are above the chance level, we can be confident that Daniel’s profile is likely to be a reliable reflection of his abilities.

Daniel’s profile shows his non-verbal ability, and particularly his spatial ability, to be stronger than his verbal and quantitative abilities.

- His verbal SAS is 97 which is equivalent to a stanine of 5. Daniel’s percentile rank is 42, showing that he performed as well as or better than 42% of the national sample. This level of performance would be described as within the average band.

- Daniel’s quantitative SAS is 105 which is equivalent to a stanine of 6. His percentile rank is 63, showing he scored as well as or better than 63% of the national sample. This level of performance would be described as within the average band.

- His non-verbal SAS is 121 which is equivalent to a stanine of 8 and a percentile rank of 92. This level of performance would be described as within the above average band.

- Daniel’s spatial SAS is 129 which is equivalent to a stanine of 9 and a percentile rank of 97. This level of performance would be described as within the very high band.

- Daniel’s mean SAS of 113 indicates that he is performing at an at least average level in all areas.

An examination of the confidence bands shows the areas of relatively higher and lower performance for Daniel. When looking at differences between scores on the different CAT4 batteries, it is important to pay attention to the confidence bands. No measurement of abilities is perfect and all contain a degree of error. This error is reflected in the confidence bands, which describe the range within which we can be reasonably certain – in the case of CAT4 90% certain – that Daniel’s ‘true score’ on each battery lies. In this context, true score refers to the score Daniel would achieve if the measurement was completely free of error.
CASE STUDY 1

Using confidence bands appropriately ensures we do not over-interpret small differences between scores on different batteries, leading us to conclude that differences in performance exist when in fact they do not.

Starting with Daniel’s strongest score which was obtained in the Spatial Ability Battery, we can see that the confidence band for this battery does not overlap with the confidence bands for the Verbal or Quantitative Reasoning Batteries. We can therefore be 90% confident that Daniel’s spatial ability is significantly stronger than his verbal or quantitative abilities. Daniel’s second highest score was on the Non-verbal Reasoning Battery. The confidence band for the Non-verbal Reasoning Battery does not overlap with the confidence band for the Verbal Reasoning Battery, so we can be at least 90% confident that there is a significant difference between his performance on these two batteries.

Looking at the Non-verbal and Quantitative Reasoning Batteries, we see that there is a very small overlap between the confidence bands. Even though this overlap is very small, it does mean that we cannot be 90% confident that there is a real difference between these two abilities. As the 90% confidence bands for his verbal and quantitative scores overlap, it can be concluded that there is no significant difference in Daniel’s reasoning abilities in these two areas.

His CAT4 mean overall SAS of 113 shows Daniel to be performing at at least an average level in all areas. This mean value is found by summing the SAS for each of the four batteries and dividing by four (that is, the number of batteries in CAT4). As Daniel’s performance varies considerably across the four CAT4 batteries, his overall score should be interpreted with a degree of caution. Although the overall SAS gives a general indication of his combined reasoning abilities, it does mask considerable variations in Daniel’s performance across the four batteries.

Commentary on profile type

- Extreme verbal bias
- Moderate verbal bias
- Mild verbal bias
- No bias
- Mild spatial bias
- Moderate spatial bias
- Extreme spatial bias

Daniel Rivera
The difference between Daniel’s verbal and spatial scores of 4 stanine points shows an extreme bias towards spatial processing. This is described in his narrative profile summary as follows:

- This profile demonstrates a distinct relative strength in spatial over verbal learning.
- Daniel should excel when engaged in tasks that require visualisation and will learn well when working with pictures, diagrams, 3D objects, mind maps and other tangible methods.
- Relatively weaker verbal skills may make learning through written texts, writing and discussion less effective.
- Daniel is highly likely to enjoy and learn best through active learning methods such as modelling, demonstrating and simulations and should be encouraged to problem-solve and develop his own ideas through these methods.
- Daniel should do very well in subjects that make the most of his spatial ability such as science, technology, design and geography but will find language-based subjects such as English, history and modern foreign languages less rewarding unless teaching methods are adapted to suit his profile.

Implications for teaching and learning

The *Individual report for teachers* also includes narrative on the implications for teaching and learning, as described here:

- Daniel has a very strong understanding of spatial concepts, with average verbal reasoning skills.
- Students with such high levels of spatial ability are often characterised as ‘intuitive’ and as those who see the ‘bigger picture’. This can be at the expense of a lack of attention to detail which may be characteristic of Daniel.
- Daniel should be encouraged to explain his understanding of spatial activities and reflect critically upon them to further enhance his verbal reasoning skills.
- Placing Daniel in paired work with others, perhaps with higher level verbal skills, could provide mutual benefits.
- Daniel may perform better where spatial and visual approaches to learning are used. For example, enacting scenes from a Shakespeare play can provide strong visual images that will help in written composition.

Comment on predicted grades

From the CAT4 data Daniel is predicted A* at GCSE level in subjects such as design technology, science and geography. The more literacy based subjects such as English, RE and history predict B at GCSE level. Knowing where his strengths lie would inform his teachers about his
learning preferences and ensure strategies used throughout KS3 and KS4 are adapted to suit his needs. With these in place Daniel has every opportunity in achieving A* in every subject.

2. Example of a highly differentiated profile: an extreme verbal bias

Damian is a student with English as an additional language. He has an innate love of learning and has excelled at everything he has done throughout KS1 and KS2. Damian developed early literacy skills and was a fluent and expressive reader by the end of Year 1. He speaks English and Tagalog (Filipino) at home and, although classed as an ‘EAL learner’, this has had little impact on his learning. Damian has developed sophisticated language skills and this is reflected in his writing which is enticing and captivating, with an immense imagination that engages his audience.

Damian’s CAT4 scores are:

<table>
<thead>
<tr>
<th>Battery</th>
<th>No. of questions attempted</th>
<th>SAS</th>
<th>NPR</th>
<th>ST</th>
<th>GR (2)</th>
<th>SAS (with 90% confidence bands)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Verbal</td>
<td>48/48</td>
<td>141</td>
<td>100</td>
<td>9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Quantitative</td>
<td>36/36</td>
<td>125</td>
<td>95</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Non-verbal</td>
<td>47/48</td>
<td>113</td>
<td>80</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Spatial</td>
<td>36/36</td>
<td>98</td>
<td>45</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>119</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Damian’s table of results shows that he completed all questions on each of the CAT4 batteries, with the exception of the Non-verbal Reasoning Battery where 47 out of the 48 questions were completed. Given this, and that all his raw scores are well above the chance level, we can be confident that Damian’s profile is likely to be an accurate indication of his abilities.

At first glance Damian’s profile shows a highly differentiated pattern of results, with his strongest score being in the area of verbal ability, followed by quantitative, non-verbal and then spatial.

- Damian’s strongest score is in the area of verbal reasoning, where he achieved a SAS of 141. This is equivalent to a stanine of 9 and a percentile rank of 100, meaning he is in the top 1% of the national population. This level of performance would be described as within the very high band.
- Damian’s quantitative SAS is 125 which is equivalent to a stanine of 8. His percentile rank is 95, showing he scored as well as or better than 95% of the national sample. This level of performance would be described as within the above average band.
• His non-verbal SAS is 113 which is equivalent to a stanine of 7 and a percentile rank of 80. This level of performance would be described as within the above average band.

• Damian’s spatial SAS is 98 which is equivalent to a stanine of 5 and a percentile rank of 45. This level of performance would be described as within the average band.

• Lastly, Damian’s mean SAS of 119 indicates that he is performing at an above average level across all areas.

Damian’s strongest score is on the Verbal Reasoning Battery. An examination of the 90% confidence bands shows that the confidence band for the Verbal Reasoning Battery overlaps with the confidence band for the Quantitative Reasoning Battery but not with the confidence bands for the Non-verbal Reasoning Battery or Spatial Ability Battery. This indicates that his verbal ability is stronger than his non-verbal and spatial abilities, but that there is no significant difference between his verbal and quantitative scores. The confidence band for Damian’s Quantitative Reasoning Battery score overlaps with the confidence band for his Non-verbal Reasoning Battery score but not his Spatial Ability Battery score. This indicates a stronger performance in quantitative than spatial reasoning, but no significant difference between his quantitative and non-verbal abilities. Similarly, as the confidence bands for his Non-verbal Reasoning Battery and Spatial Ability Battery scores overlap, there is no significant difference in his performance in these areas.

His CAT4 mean overall SAS of 119 shows Damian to be performing at an above average level across all areas. However, even more so than the profile of Daniel described above, his performance varies considerably across the four CAT4 batteries. Again this means that while his overall SAS gives a broad indication of his reasoning abilities, it should be used cautiously.

Commentary on profile type

- Extreme verbal bias
- Moderate verbal bias
- Mild verbal bias
- No bias
- Mild spatial bias
- Moderate spatial bias
- Extreme spatial bias

Damian Aguirre
The difference between Damian’s spatial and verbal scores of 4 stanine points shows an extreme bias towards verbal processing. This is described in the narrative profile summary as follows:

- This profile demonstrates a distinct strength in verbal compared to spatial learning.
- Damian should excel when engaged in tasks that make the most of his very strong verbal skills including learning through written texts, writing and discussion.
- Relatively weaker spatial skills – which are, however, in the average range – will make learning through visualisation, working with pictures, diagrams, 3D objects, mind maps and other tangible methods less attractive. With encouragement, these methods can make learning more engaging and effective for Damian.
- Damian is highly likely to enjoy and learn best by talking about learning, ideas and opinions, gathering information through reading and through both factual writing and creative writing tasks.
- Damian should do very well in subjects that make the most of his verbal ability, such as English, humanities and modern foreign languages.
- Damian may find certain aspects of subjects such as science, technology, design and geography less rewarding unless teaching methods are adapted to suit his profile or his spatial skills are developed to more closely match his verbal skills.

Implications for teaching and learning

The Individual report for teachers also includes narrative on the implications for teaching and learning, as described here:

- Wherever the understanding of spatial concepts is required in the curriculum, such as art, design, science and maths, teachers should be aware that Damian may require some additional support.
- However, given his excellent verbal reasoning skills, expectations need to be appropriately high with enrichment activities to provide challenge and extension.
- While teachers should continue to use a broad and varied range of styles, it is likely that Damian will be a self-motivated and independent learner.
- Teachers should encourage Damian to follow his interests and he will benefit from a fast pace of instruction, tend to learn very quickly and respond well to tasks that develop his independent study skills.
- Extension activities that require him to form hypotheses, make predictions and test outcomes may be particularly helpful.
- Q&A sessions should be used to develop higher order thinking skills by requiring Damian to justify opinions.
- Damian should be encouraged to read extensively and choose from a wide range of material.
• Damian may enjoy creative writing and discussion and debate and should be encouraged to develop such interest both in lessons and through extra-curricular activities.

Teacher’s perspective

Information gathered from the CAT4 data is invaluable in identifying those at the top end of the year group and ensuring that teachers are aware of the students’ needs as well as providing opportunities for challenging and extending learning. It offers information for setting up ‘target groups’ with like-minded students that can focus on study techniques, revision and exam preparation. The lowest scoring students in the year group can be identified easily and further assessments administered to establish appropriate interventions. The key message is ensuring staff are made aware of the identified students and that they are trained in appropriate differentiation of materials for the high and low ability students that cater for their specific strengths and weaknesses. When the students are exposed to this within teaching and learning they have every opportunity to make the expected progress, if not more.
Background

This case study is taken from a mixed 11 to 18 community comprehensive school situated on the outskirts of an industrial town in South Wales. Students come mainly from several surrounding villages and the school serves an area that is disadvantaged economically: part of the school’s catchment area is classified as one of the ten most disadvantaged wards in the local authority and also contains two Communities First areas. At 28.5%, the percentage of students entitled to free school meals is well above the Wales average for secondary schools of 17.1%.

Almost all of the students come from English-speaking homes. At present, 13 students are registered for the Provision for Autistic Spectrum Education (PASE) class – a local authority enhanced resource provision for students with communication disorders which opened in September 2004.

At a recent inspection, good features of the school’s work included:

- progress in raising standards at KS3
- the good progress students make in the majority of lessons in developing their knowledge and understanding
- the very inclusive ethos and wide range of extra-curricular activities
- very good support for students with communication disorders
- the well-established transition arrangements and other valuable partnerships
- effective links with an extensive range of specialist services.

Use of CAT4

CAT is given to all Year 7 and Year 9 students and there is school-wide use of CAT results.

All teachers have access to CAT results through the school intranet and they are stored in SIMS. CAT results are also included in the school registers. The use of CAT at this school is very well established. The Assistant Head teacher describes CAT as being a ‘language’ that now ‘permeates’ the school, despite some scepticism when it was first introduced. CAT results are discussed at INSET days and teachers ‘rate’ CAT as a good indicator of students’ potential.

1 The Communities First programme is working in the most deprived areas throughout Wales, helping to improve the lives of many residents of all ages.
Setting students

The school’s experience is that teachers from feeder primary schools tend to be ‘over-optimistic’ in their evaluations of students’ attainment, whereas CAT is seen as providing a more ‘realistic’ assessment of students’ potential. Therefore, at this school, CAT is used to help stream students into sets. The Quantitative Reasoning Battery is used for allocating students to maths sets and also for science, as performance on maths and science is seen to be linked closely to this battery. Results from the Verbal Reasoning Battery are used to allocate students to English sets.

The Deputy Head says: ‘It is important to be flexible when setting students and prepared to move them between sets in a way that is appropriate to their abilities.’ In line with this, eight weeks into the start of term, the performance of all new students is reviewed to determine whether they are in the right set. On average, only 4 to 5% of students are allocated to a different set on the basis of this review. The Deputy Head adds: ‘This is seen as providing very clear evidence of the effectiveness of CAT in streaming new students.’

Identifying students with literacy needs

CAT is used to identify students who may be withdrawn from their classes for more specific intervention. Students scoring in the range of SAS 80 to 90, particularly on the Verbal Reasoning Battery, are screened through a computer package that is able to identify more specific literacy needs. If this screening identifies particular literacy needs, students are then put through tailored programmes to support their development in these areas.

Target setting and subject choice

CAT is relied upon heavily for target setting throughout students’ time at school from Years 7 to 11. ‘As part of this process students are encouraged to use their CAT scores in their own self-evaluation of appropriate targets’, says the Deputy Head. ‘Individual reports are also used by teachers at option evenings to support discussion about students’ subject choices. In addition to tracking whole cohorts, the top 30 performers in each intake are identified on the basis of their CAT scores.’

Monitoring intakes over time

CAT results are used to monitor intakes over years and to follow student performance over time. CAT results are summarised to provide average scores on each battery for each year group. This gives a high level understanding of the abilities of each year group entering school and allows the variations in the profiles of different intakes to be tracked.

Examples of how results are used for individual students are given on the following pages.
1. Example of a relatively strong spatial profile

Dominic is in Year 9 and is regarded by his teachers as being a ‘hard-working student’. The school records both ‘effort’ and ‘attainment’ grades; Dominic’s effort grades have been consistently high for the last two years. His scores in core subjects have remained slightly below national targets, despite the effort he has been putting in. On feedback of his CAT4 scores to his teachers, Dominic’s profile of scores was readily accepted and his non-verbal and spatial abilities recognised as strengths, even though these may not always have been seen in his academic attainment.

Dominic obtained the following scores on CAT4:

<table>
<thead>
<tr>
<th>Battery</th>
<th>No. of questions attempted</th>
<th>SAS</th>
<th>NPR</th>
<th>ST</th>
<th>GR</th>
<th>SAS (with 90% confidence bands)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Verbal</td>
<td>48/48</td>
<td>87</td>
<td>20</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Quantitative</td>
<td>36/36</td>
<td>86</td>
<td>18</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Non-verbal</td>
<td>38/48</td>
<td>100</td>
<td>50</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spatial</td>
<td>35/36</td>
<td>112</td>
<td>78</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>-</td>
<td>96</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Dominic’s table of results shows that he completed all questions on the CAT4 Verbal and Quantitative Reasoning Batteries. On the Non-verbal Reasoning Battery he completed 38 out of the 48 questions and on the Spatial Ability Battery 35 out of 36 questions. All his raw scores are well above the chance level, so we can be confident that Dominic’s profile is likely to be an accurate indication of his abilities.

An overview of Dominic’s profile shows this to be quite differentiated. He has obtained similar verbal and quantitative scores that are below average, while his non-verbal score is average and his spatial score is above average.

- Verbal reasoning is one of Dominic’s two lowest scores, where he achieved an SAS of 87. This is equivalent to a stanine of 3 and a percentile rank of 20, meaning he performed better than 20% of the national sample. This level of performance would be described as within the below average band.
- Dominic’s quantitative SAS is 86 which is equivalent to a stanine of 3. His percentile rank is 18, showing he scored as well as or better than 18% of the national sample. This level of performance would also be described as within the below average band.
- His non-verbal SAS is 100 which is equivalent to a stanine of 5 and a percentile rank of 50. This level of performance would be described as within the average band.
Dominic’s spatial SAS is 112 which is equivalent to a stanine of 7 and a percentile rank of 78. This level of performance would be described as within the above average band.

Lastly, Dominic’s mean SAS of 96 indicates that he is performing at an average level across all areas.

Dominic’s strongest score is on the Spatial Ability Battery. An examination of the 90% confidence bands shows that it overlaps with the Non-verbal Reasoning Battery confidence band but not with the confidence bands for the Verbal or Quantitative Reasoning Batteries. This indicates his spatial ability is stronger than his verbal and quantitative abilities, but that there is no significant difference between his spatial and non-verbal scores. The confidence bands for Dominic’s scores on the Non-verbal, Quantitative and Verbal Reasoning Batteries all overlap with each other, indicating that there is no significant difference between his performance on these three batteries.

His CAT4 profile shows Dominic to be performing in the below average to above average range with an overall SAS of 96. However, as with Daniel’s profile described previously, his performance varies considerably across the four CAT4 batteries. Again this means that, while his overall SAS gives a broad indication of his reasoning abilities, it should be used cautiously.

Commentary on profile type

The difference between Dominic’s spatial and verbal scores of 4 stanine points shows an extreme bias towards spatial processing. This is described in the narrative profile summary for teachers as follows:
• This profile demonstrates a distinct preference for spatial over verbal learning.

• Dominic should perform at a high level when engaged in tasks that require visualisation and will learn quickly when working with pictures, diagrams, 3D objects, mind maps and other tangible methods.

• Weak verbal skills will make learning through written texts, writing and discussion more difficult.

• Dominic is highly likely to enjoy and learn best through active learning methods such as modelling, demonstrating and simulations, and should be encouraged to problem-solve and develop his own ideas through these methods.

• However, he is likely to need support when engaging with written material.

• Dominic should do very well in subjects that make the most of his spatial ability such as science, technology, design and geography, but will find language-based subjects such as English, humanities, history and modern foreign languages difficult unless teaching methods are adapted to suit his profile.

Implications for teaching and learning

The Individual report for teachers also includes narrative on the implications for teaching and learning, as described here:

• Further investigation of Dominic’s weakness in verbal skills would be beneficial.

• A test to establish a reading age is recommended to determine whether Dominic is able to access the curriculum.

• Support for literacy or additional work to build comprehension and vocabulary may be appropriate.

• Dominic is likely to benefit from one-to-one support of a specialist nature.

• Dominic should be encouraged to explain his understanding of spatial activities and reflect critically upon them to develop his verbal reasoning skills.

• Placing Dominic in paired work with others, perhaps those with higher level verbal skills, could provide mutual benefits.

• More rapid progress will be made if strategies used within school can be further supported at home.

Dominic’s bias towards spatial thinking is recognised by the school. He is also a student who attains consistently high teacher assessment ratings for ‘effort’. Both his effort and level of attainment mean that he will be considered for transfer to a higher set in the near future.
Actions to support teaching and learning

- Ensure Dominic’s strengths in the areas of non-verbal and spatial reasoning are understood by his teachers.
- Provide activities that allow Dominic to use his spatial and non-verbal abilities, for example by getting him to consider how he might represent problems visually and presenting information in a way that appeals to his strengths.
- Encourage Dominic to ‘get his ideas down’ as they occur to him, and then encourage him to think about structure and presentation.
- In areas such as science and maths, build on Dominic’s strong spatial ability by maximising his opportunities to work with space, shape, designs and visual problem solving. Then help Dominic to draw connections between these and other aspects of these subject areas.

2. Example of an extreme spatial bias with very weak verbal skills

Rhiannon is a student with a hearing impairment. She has a cochlear implant but her severe hearing impairment has had a profound effect on the development of her verbal ability. Despite her difficulties, Rhiannon has a positive attitude towards school and a good relationship with her peers.

Rhiannon obtained the following scores on CAT4:

<table>
<thead>
<tr>
<th>Battery</th>
<th>No. of questions attempted</th>
<th>SAS</th>
<th>NPR</th>
<th>ST</th>
<th>GR (IQ)</th>
<th>SAS (with 90% confidence bands)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Verbal</td>
<td>48/48</td>
<td>79</td>
<td>8</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Quantitative</td>
<td>36/36</td>
<td>93</td>
<td>32</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Non-verbal</td>
<td>44/48</td>
<td>101</td>
<td>52</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Spatial</td>
<td>36/36</td>
<td>104</td>
<td>60</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>-</td>
<td>95</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Her CAT4 profile shows Rhiannon to be stronger in spatial and non-verbal reasoning than verbal thinking. Her mean SAS score is 95. In a case such as Rhiannon’s the overall score needs to be treated with caution, as her scores on the Non-verbal Reasoning and Spatial Ability Batteries suggest this may underestimate her potential. However, the bias towards spatial learning has been created by very weak verbal skills, so is unlike the case of Daniel in Case study 1 which demonstrates a similar bias but at a much higher level of ability.
A report for the student and for the parent or carer is available and could be used at parents’ evening and as a support to Rhiannon in managing her learning. Advice to the student includes:

• CAT4 shows you have a strong preference for learning by using pictures, diagrams and other visual ways of learning rather than by reading, writing and discussion.

• You may find much of your schoolwork difficult, particularly subjects where you need to read and write a lot.

• You may find difficulty taking part in discussion in class but this will improve the more you take part, so do try.

• Do you find reading difficult? If so, you may need some extra help working one-to-one with a teacher.

• Make sure you understand what you are learning, step-by-step, as it is important for you to learn at a pace that is right for you.

• Always ask your teacher to explain anything that is not clear.

• However, you have good spatial skills and these will help you in very many subjects.

• Do you find maths difficult but do well in some areas such as geometry? Do you like solving problems when these are presented using diagrams, charts and pictures? If so, this may well explain why you do better in some aspects of learning. You are able to use your spatial skills in certain topics in subjects that may otherwise require step-by-step learning or lots of reading.

• Make sure you use a range of ways to help you learn best such as texts supported with lots of pictures, videos, photos and examples from the world around you.

• Make notes and revise using mind maps, making notes on texts and creating your own diagrams with pictures or images as reference points.

The report for Rhiannon’s parents highlights her potential difficulty with reading and suggestions include:

• Rhiannon’s profile of scores from CAT4 shows she has a strong preference for learning via visual, practical ways with a weakness in verbal skills that may lead to difficulties in literacy.

• Rhiannon may find some of her schoolwork difficult.

• Does Rhiannon find reading difficult? If so, she may need some extra help at home under guidance from school.

• When you are helping with homework, make sure that Rhiannon understands each step of the task before moving on. It is important that Rhiannon learns at a pace that is right for her.

• Rhiannon may see the solution to a problem quickly but be unable to talk through the steps needed to reach the answer. Make sure she is helped to explain how she has worked this out.

• Tell Rhiannon to ask the teacher to explain anything that is not clear.
• Encourage Rhiannon to use a range of ways to learn and revise, but focus on making mind maps, using pictures, charts and diagrams and using visual clues to help remember key information. This is where her strength lies and should be used as much as possible.

With a student such as Rhiannon, who has a hearing impairment that is known to affect her learning, it is important that suggestions for teaching and learning are interpreted in the light of her particular circumstances. Although Rhiannon may struggle with verbally based material owing to her hearing impairment, her performance on the CAT4 Spatial Ability and Non-verbal Reasoning Batteries shows her to be at least as capable as most students in these areas. Rhiannon’s relative difficulties with verbal material should not be taken as an overall indication of her potential.

Actions to support teaching and learning

Rhiannon’s CAT4 profile shows that her non-verbal and spatial reasoning abilities are at or slightly above the mean for her peers. Her verbal and, to a lesser extent quantitative, reasoning abilities reflect the difficulty she has with language which has resulted from her hearing difficulties. Rhiannon’s profile clearly shows that her academic attainment is not likely to be a true reflection of her abilities. It is important that her teachers recognise her potential and provide activities that draw on her non-verbal and spatial strengths to allow her to show her capabilities and so that she remains engaged with education.

3. Example of balanced verbal and spatial skills with high quantitative reasoning: an apparently anomalous result

Charlotte is currently in Year 9. She is a positive, motivated and well-liked student who consistently tries hard in school. Charlotte’s strengths lie in the areas of science and maths, where she has been attaining slightly above national targets for the past few years. She is somewhat weaker in English and subjects that draw more on her written ability, although she still attains as well as most of her peers in these areas.

Charlotte obtained the following scores on CAT4:

<table>
<thead>
<tr>
<th>Battery</th>
<th>No. of questions attempted</th>
<th>SAS</th>
<th>NPR</th>
<th>ST</th>
<th>GR (3)</th>
<th>SAS (with 90% confidence bands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbal</td>
<td>47/48</td>
<td>91</td>
<td>28</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Quantitative</td>
<td>34/36</td>
<td>115</td>
<td>84</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Non-verbal</td>
<td>34/48</td>
<td>104</td>
<td>60</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Spatial</td>
<td>29/36</td>
<td>85</td>
<td>16</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>-</td>
<td>99</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Charlotte’s table of results shows that she did not manage to complete all of the questions on any of the CAT4 batteries in the time allowed. This was particularly notable on the Non-verbal Reasoning Battery where she attempted 34 out of 48 questions and on the Spatial Ability Battery where she attempted 29 out of 36. Despite this, her raw scores on each of the batteries are above chance levels. Her results are therefore likely to be a reliable reflection of her abilities.

- Charlotte’s second lowest score was on the Verbal Reasoning Battery where she achieved a SAS of 91. This is equivalent to a stanine of 4 and a percentile rank of 28, meaning she performed better than 28% of the national sample. This level of performance would be described as within the average band.

- Charlotte’s SAS on the Quantitative Reasoning Battery was 115 which is equivalent to a stanine of 7. Her percentile rank is 84, showing she scored as well as or better than 84% of the national sample. This level of performance would also be described as within the above average band.

- Her SAS on the Non-verbal Reasoning Battery was 104 which is equivalent to a stanine of 6 and a percentile rank of 60. This level of performance would be described as within the average band.

- Charlotte’s SAS of 85 on the Spatial Ability Battery is her lowest score, which is equivalent to a stanine of 3 and a percentile rank of 16. This level of performance would be described as within the below average band.

- Lastly, Charlotte’s mean SAS of 99 indicates that she is performing at an average level across all areas.

Charlotte’s profile therefore suggests that she has a particular strength in quantitative reasoning.

Profile examination

An examination of the confidence bands shows the areas where Charlotte has performed relatively higher and lower. Starting with Charlotte’s strongest score which is on the Quantitative Reasoning Battery, we can see that the confidence band for this battery does not overlap with the Verbal Reasoning or Spatial Ability Batteries. We can therefore be 90% confident that Charlotte’s quantitative ability is significantly stronger than her verbal or spatial abilities. Charlotte’s second highest score is on the Non-verbal Reasoning Battery. However, as the confidence band for this battery overlaps with the confidence bands for the Verbal Reasoning and Spatial Ability Batteries, we cannot be 90% confident that there is a real difference between these abilities. Similarly, as the 90% confidence bands for her scores on the Verbal Reasoning and Spatial Ability Batteries overlap, it can be concluded that there is no significant difference in Charlotte’s reasoning abilities in these two areas.

Her CAT4 mean overall SAS of 99 shows Charlotte to be performing at an average level across the CAT4 batteries. While overall SAS scores can provide a useful indicator of general reasoning abilities, they can also
mask the profile of scores that underlie this summary. In Charlotte’s case, we see that her profile of scores spans one standard deviation above the mean (quantitative SAS of 115) to almost one standard deviation below it (spatial SAS of 85).

Charlotte’s profile appears to be fairly balanced in terms of her verbal and spatial abilities, but her higher scores on the Quantitative and Non-verbal Reasoning Batteries suggest that further investigation is needed. It is very unusual for a student to have much stronger quantitative and non-verbal scores than both their verbal and spatial scores (this would only occur approximately 6 times in 1,000 students). Underpinning performance in these two areas should be similar level skills in either verbal or spatial ability or both. This suggests that one or other of the verbal or spatial scores might not accurately reflect Charlotte’s true ability. The school serves an area of economic deprivation and so many of the influences and determinants for good verbal skills may be lacking. Charlotte’s score of 91 for verbal reasoning is just outside the cut-off for further assessment for reading difficulties. In this case it would be most appropriate to assess Charlotte further as she may have a reading difficulty such as dyslexia or difficulties with comprehension. It could therefore be that she really has a relative bias to verbal thinking, but this is not shown because her verbal abilities have not been able to develop to their potential or because she has dyslexic-type difficulties that limit her ability to deal with the printed word.

Actions to support teaching and learning

On the basis of her CAT4 profile, Charlotte has been attending a literacy support group for one session a week. An initial diagnostic assessment indicated that Charlotte was likely to have difficulties with her verbal comprehension. A specific programme of support has now been put in place to support Charlotte.
CAT4 and students for whom English is an additional language

Schools often ask for guidance on how to administer CAT to students for whom English is an additional language. Whether to include such students in the administration of the whole or just part of CAT will depend on many factors, some of which are set out below. The decision will also depend on the purpose of testing with CAT which may include the need to assess a whole cohort to build up an accurate overview of their ability.

Research over three decades has shown that students who are taught in a language that is not their home language may take up to seven or even ten years to achieve parity in educational outcomes with their first language peer group. Building on work done in Canada (Cummins, 1981), large scale studies in the US (Collier and Thomas, 1989, 1997) found that students of this type aged between 8 and 11 were the fastest achievers and that, for students in this age range, two years of education in their first language in their home country was a significant variable with a positive impact on academic achievement in their additional language. Collier and Thomas also found that, after two years, attainment in functional English was comparable to their mainstream peer group. In mathematics, attainment was actually well above average, demonstrating that, for aspects of language which are taught directly (such as grammar and punctuation) and where knowledge and skills can be transferred, English language learners do as well as or better than their peers.

The same study found that students entering the education system between the ages of 12 and 16 had the lowest scores on standardised tests at the equivalent of Y11/S5: these students run out of time to acquire the level of English proficiency to perform at the same level as their mainstream peer group.

Cummins coined the term CALP (Cognitive Academic Language Proficiency) and, as the name suggests, this is the basis for a child’s ability to cope with the academic demands placed upon him or her in the various subjects across the curriculum. Cummins states that, while many children develop native speaker fluency (which he calls Basic Interpersonal Communication Skills or BICS) within two years of immersion in the target language, it takes between five and seven years for a child to be working on a level with first language speakers as far as academic language is concerned.

These studies focused on a particular group of students entering the US or Canada which is only partly representative of students in UK schools who have English as a second language. This is because many will enter school having been exposed to the English language from birth and speaking English and their home language with family and friends. Maintaining a student’s development in their first language is an important factor in CALP: concepts that are understood in the first language may readily be understood in the acquired language once appropriate vocabulary has been learned. Understanding a new concept and simultaneously learning the language to express that understanding is more demanding.

A student’s environment will have an impact too. In the same way that cultural and social factors influence first language speakers, students with English as an additional language will be affected, for example by their socio-economic group, level of parental support, school attendance, etc.

Schools across the UK will be working to support students like those in the research findings described above. Other students, however, will be from established communities with different levels of proficiency in English and many will be bilingual.

Deciding whether to administer CAT4 to students for whom English is an additional language will depend on several factors and should be based on a range of information about an individual student. However, three out of the four batteries in CAT4 have very little language content and so students can be supported where necessary by translating administration instructions. This is straightforward for the paper edition where instructions are given orally but may be more problematic for the digital edition where administration is delivered through the integrated voiceover. In this case the voiceover may be turned off and, as all text appears on screen, it is possible for the school to translate this for the student.

Issues for consideration

- The length of time the student has been educated in English in the UK:
 - If this is less than five years, adaptation such as the translation of administration instructions may be considered to ensure that CAT4 is accessible.
 - If this is two years or less, it may be inappropriate to give the Verbal Reasoning Battery but the administration of the other batteries can be adapted to ensure accessibility.
- The point at which the student entered school in the UK may be significant:
 - Children who have entered a UK school when older may well be more disadvantaged than those in the 8 to 11 age range, for example.
The student’s attainment in subjects across the curriculum and level of English-language acquisition demonstrated:

- BICS may be highly competent.
- Aspects of CALP may also be average or above (for example, in functional English and mathematics).
- Higher order skills in reading and reading comprehension in the acquired language should be part of the decision on how the tests are provided too.

Some implications of testing

- Indicators are likely to be an underestimate of eventual attainment if based on all the batteries of CAT4 and where a student’s level of English-language acquisition disadvantages them in the Verbal Reasoning Battery (and assuming that a student in, say, Y7/S1, continues to learn English and so improve their CALP). In such cases it may be better to omit the verbal tests for now, retesting with the verbal tests when English language acquisition is more advanced, at Y9/S3 or above.

- Indicators for English and modern foreign languages are usually based on the Verbal Reasoning Battery, so these may contain a greater degree of error when based on the mean score from the other three batteries.

- Indicators will be based on the mean of the scores from the Non-verbal Reasoning, Quantitative Reasoning and Spatial Ability Batteries where the Verbal Reasoning Battery is omitted.

- The Non-verbal Reasoning Battery involves reasoning with both language – the student will think through the tasks in his or her language – and spatial reasoning (with shapes or patterns), so the score from this part of the CAT4 will be especially useful when supporting students for whom English is an additional language as it requires the mustering of two types of reasoning.

- The Quantitative Reasoning Battery also uses a mixture of verbal and spatial reasoning, although the verbal element is more limited than in the Non-verbal Reasoning Battery. For example, it may only involve recalling things like ‘three times two is six’ whereas the Non-verbal Reasoning Battery can necessitate finding words to describe a wide range of shapes and operations.

Adaptations to the administration

- Administration in the student’s first language must be carried out separately from the group administration and, if more than one additional language is to be accommodated, separate test sessions or rooms must be arranged.

- Translation and administration of instructions and examples should be carried out by a teacher, teaching assistant, learning mentor or similar practitioner whose first language is the same as that of the student. A friend or family member is not an appropriate person to translate and administer CAT4. The test items must not be translated.
• Translated administration instructions should be prepared in advance and must follow those in the published test as closely as possible. Translated material should be written down before being read out so that all students tested in any language are given the same instructions.

• All timings must be adhered to and no assistance should be given in accessing the actual test questions. So, for example, the questions in the Verbal Reasoning Battery must not be translated nor should any other elaborations be made to any of the other batteries, such as explaining the transformation rules that underpin the quantitative questions.

Example

An example of how students with English as an additional language are successfully included in CAT testing is seen in a primary school in Berkshire. This is a larger than average primary serving a culturally diverse area. About three-quarters of the students are from minority ethnic groups, many with English as an additional language.

When children come into school, those with English as an additional language receive intensive language support which has a big impact on their achievement. The Head teacher says: ‘Our programme to support these children has been very successful and we find that by the end of Year 1 many are outstripping their peer group. Such is the success of this approach that a similar support programme is being implemented with first language English-speaking children whose language skills are delayed and we anticipate similar results.’

There is special provision for children on the autistic disorder spectrum of whom there are eight in the school at the time of writing. Wherever possible all children are included in CAT testing.

CAT is administered in January each year to Years 4 and 5 and is used to:

• assess the ability of the whole year group, which does vary year-on-year
• contribute to provision mapping for SEN children
• provide indicators for KS2 SATs
• set targets for individual students.

The Head teacher comments: ‘It is important to the school to know about the ability of a whole year group and for this reason we tend to include all our students in CAT. As long as we are aware of any factors that might affect a student’s scores it would be our preference to test all the students. Our cohort is fairly stable although we do have a number of students joining higher up the school who need English language support.’

The Head continues: ‘We use Assessing Pupil Progress as our main tool for tracking progress and CAT adds information that complements teachers’ own assessments and results from optional SATs given in
Years 3, 4 and 5. CAT data is a useful additional source of information about a whole year group. For example, when Ofsted inspectors are reviewing our results in literacy and numeracy, CAT offers objective evidence of the ability levels across the group.’

Two groups of children were tested as part of the CAT4 standardisation. Proper interpretation of CAT4 profiles necessitates setting the scores in context by considering background information about the children. For example, three Year 6 children tested with CAT4 Level C obtained a similar profile indicating an extreme spatial bias. However, once some background information was factored in and the CAT4 scores given a context, it is possible to see the different reasons for this bias that has been revealed through testing with CAT4. Two of the children have special needs which mean their spatial abilities are genuinely higher than their verbal abilities. The remaining child has a verbal score that is probably being suppressed by the fact that he is still learning English. He may in fact have a balanced intellectual profile.

The children’s scores are as follows:

<table>
<thead>
<tr>
<th>Student name</th>
<th>Verbal</th>
<th>Quantitative</th>
<th>Non-verbal</th>
<th>Spatial</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omar Mohamed</td>
<td>88</td>
<td>116</td>
<td>1</td>
<td>115</td>
<td>2</td>
</tr>
<tr>
<td>Arif Phull</td>
<td>85</td>
<td>116</td>
<td>1</td>
<td>115</td>
<td>2</td>
</tr>
<tr>
<td>Ellie Smith</td>
<td>83</td>
<td>111</td>
<td>3</td>
<td>111</td>
<td>3</td>
</tr>
</tbody>
</table>

Both Arif and Omar have English as an additional language. However, Arif has been in school from Reception, whereas Omar, whose first language is Arabic, joined at the beginning of Year 6. An important consideration for Arif is that he has a diagnosed speech delay which may well make the tests in the CAT4 Verbal Reasoning Battery especially difficult for him. His strengths in the Quantitative Reasoning and Spatial Ability Batteries will help him do well in maths and science and can be drawn on to support and develop his verbal skills. The report for Arif recognises that support for literacy will be required (and he is receiving this).

The Individual report for teachers for these three students says:

- Arif (and/or Omar and Ellie) should be encouraged to explain his or her understanding of spatial activities and reflect critically on them to develop his or her verbal reasoning skills.

Omar’s spatial skills are also above average. His score on the Non-verbal Reasoning Battery is of interest as it may be lower than his score on the Spatial Ability Battery because Omar’s verbal reasoning is below average. However, it is highly unlikely that his score on the Verbal Reasoning Battery is an accurate reflection of his verbal skills. So retesting in Year 8 or Year 9 might offer a much more accurate profile of his skills which may then be more evenly balanced and in the above average range rather than as his current Year 6 test results suggest. However, including Omar alongside his peer group in the test session is more than appropriate as CAT4 has allowed him to demonstrate his skills in all areas, especially his particularly strong spatial ability.
Ellie, whose first language is English, has dyslexia although her teacher reports that she is doing extremely well in reading and making good progress. Ellie is clearly able to bring together her verbal and spatial reasoning skills in the Non-verbal Reasoning Battery (SAS 111), but it is likely that her strengths are more spatial than verbal and that she will go on to do well in a range of subjects at secondary school – science, design technology and geography, for example – as long as her literacy is supported and continues to improve.

‘We will continue to include all our students when we test with CAT4,’ says the Head teacher. ‘We have just decided to use the Pupil Attitudes to Self and School (PASS) which can be used alongside CAT4 and teacher assessment to give an even fuller picture of our students’ potential and how to make sure they do the best they can.’
Technical information

Trialling

Pre-trials

Small scale trials were conducted in autumn 2009 to check some of the new questions being developed for the CAT4 Spatial Ability Battery. Three versions of the new spatial test were created and were trialled with approximately 850 students in Years 4, 6, 8 and 9. Results from this study were used to develop further spatial questions for the main trials.

Main trials

The main trials of all the questions in all four batteries of CAT4 were carried out in autumn 2010.

The numbers of students taking part in the trials were as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of students</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2,028</td>
</tr>
<tr>
<td>6</td>
<td>1,870</td>
</tr>
<tr>
<td>8</td>
<td>2,179</td>
</tr>
<tr>
<td>10</td>
<td>2,114</td>
</tr>
<tr>
<td>Total</td>
<td>8,191</td>
</tr>
</tbody>
</table>

For the trials, 24 test booklets were created, that is six test booklets for each year group. All students took Verbal Classification and Figure Recognition plus two of the remaining six test types, so that all items were taken by at least 300 students. Some of the questions were duplicated in booklets across year groups.

The data from the trials were analysed to provide information on the difficulty level of each question, its ability to discriminate between high and low scorers, and the extent to which it proved equally difficult for both sexes, once each sex’s general level of performance was taken into account. This information was then used to select and order the sequences of questions for the final standardisation version of CAT4.
Standardisation

The standardisation of CAT4 took place between September and December 2011 in England, Wales, Scotland and Northern Ireland. A national database of schools was created and schools were grouped into ten categories – by country (Wales, Scotland and Northern Ireland) and, for England, further grouped into independent or grammar plus five categories of school intake based on the proportion of students taking free school meals.

Schools were selected by stratified random sampling procedures within these groupings. As this was a national sample, many schools taking part in the standardisation had never used CAT before. For the standardisation, schools were asked to do one pre-selected CAT4 test level and were given an option to do other levels. Schools were free to choose between the paper and digital version of the test. Primary schools were asked to test all students in the year group but secondary schools had the option either to test two randomly selected teaching groups if they tested by paper, or to test the whole year group if they chose the digital option.

The numbers of students taking part in the standardisation were as follows:

<table>
<thead>
<tr>
<th>Country</th>
<th>Primary</th>
<th>Secondary</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>England</td>
<td>4,663</td>
<td>13,085</td>
<td>17,748</td>
</tr>
<tr>
<td>Wales</td>
<td>269</td>
<td>2,169</td>
<td>2,438</td>
</tr>
<tr>
<td>Scotland</td>
<td>259</td>
<td>2,439</td>
<td>2,698</td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>179</td>
<td>1,645</td>
<td>1,824</td>
</tr>
<tr>
<td>Total</td>
<td>5,370</td>
<td>19,338</td>
<td>24,708</td>
</tr>
</tbody>
</table>

These numbers were compared with the national population:

<table>
<thead>
<tr>
<th>Country</th>
<th>Primary</th>
<th>Secondary</th>
<th>Total</th>
<th>National population</th>
</tr>
</thead>
<tbody>
<tr>
<td>England</td>
<td>87%</td>
<td>68%</td>
<td>72%</td>
<td>83%</td>
</tr>
<tr>
<td>Wales</td>
<td>5%</td>
<td>11%</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>Scotland</td>
<td>5%</td>
<td>13%</td>
<td>11%</td>
<td>8%</td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>3%</td>
<td>9%</td>
<td>7%</td>
<td>3%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Note: Totals may not add up to 100% due to rounding
The primary school sample is slightly over-represented by students from England and under-represented by students from Scotland. The secondary school sample is over-represented by students from Wales, Scotland and Northern Ireland and under-represented by students from England. The standardisation results were therefore weighted to account for sample bias.

The numbers of students doing the paper and digital editions are given below:

<table>
<thead>
<tr>
<th>Delivery mode</th>
<th>Primary</th>
<th>Secondary</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital</td>
<td>1,123 (21%)</td>
<td>13,412 (69%)</td>
<td>14,535 (59%)</td>
</tr>
<tr>
<td>Paper</td>
<td>4,247 (79%)</td>
<td>5,926 (31%)</td>
<td>10,173 (41%)</td>
</tr>
<tr>
<td>Total</td>
<td>5,370</td>
<td>19,338</td>
<td>24,708</td>
</tr>
</tbody>
</table>

Test reliability

The reliability of a test is a measure of the consistency of a student’s test scores over repeated testing, assuming conditions remain the same – that is, there was no fatigue, learning effect or lack of motivation. Tests with poor reliability might result in very different scores for a student across two test administrations.

The reliability of the test was estimated using the Cronbach’s Alpha formula which produces values ranging from 0 to 1. Values above 0.80 are considered to be very good. The reliability values for the various CAT4 batteries are given in the table below, and all show that the tests are very reliable.

<table>
<thead>
<tr>
<th>CAT4 level</th>
<th>Verbal Reasoning Battery</th>
<th>Quantitative Reasoning Battery</th>
<th>Non-verbal Reasoning Battery</th>
<th>Spatial Ability Battery</th>
<th>Overall CAT4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.91</td>
<td>0.91</td>
<td>0.90</td>
<td>0.87</td>
<td>0.97</td>
</tr>
<tr>
<td>B</td>
<td>0.89</td>
<td>0.90</td>
<td>0.90</td>
<td>0.88</td>
<td>0.96</td>
</tr>
<tr>
<td>C</td>
<td>0.86</td>
<td>0.91</td>
<td>0.87</td>
<td>0.85</td>
<td>0.96</td>
</tr>
<tr>
<td>D</td>
<td>0.90</td>
<td>0.91</td>
<td>0.89</td>
<td>0.86</td>
<td>0.96</td>
</tr>
<tr>
<td>E</td>
<td>0.89</td>
<td>0.88</td>
<td>0.86</td>
<td>0.88</td>
<td>0.96</td>
</tr>
<tr>
<td>F</td>
<td>0.89</td>
<td>0.87</td>
<td>0.85</td>
<td>0.88</td>
<td>0.96</td>
</tr>
<tr>
<td>G</td>
<td>0.90</td>
<td>0.84</td>
<td>0.85</td>
<td>0.86</td>
<td>0.95</td>
</tr>
<tr>
<td>Average A-G</td>
<td>0.89</td>
<td>0.89</td>
<td>0.87</td>
<td>0.87</td>
<td>0.96</td>
</tr>
</tbody>
</table>
For interpreting the score of an individual student, the standard error of measurement (SEM) is a more useful statistic than a reliability coefficient. It indicates how large, on average, the fluctuations in standard scores may be. The SEM for the Verbal Reasoning Battery is 5.0, which indicates that there is a 68 per cent chance that the student’s true verbal SAS will be in the range +/- 5.0. For example, for an average-performing student with a verbal SAS of 100, there is a 68 per cent chance that his or her true verbal score is in a range from 95 to 105.

<table>
<thead>
<tr>
<th>CAT4 level</th>
<th>Verbal Reasoning Battery</th>
<th>Quantitative Reasoning Battery</th>
<th>Non-verbal Reasoning Battery</th>
<th>Spatial Ability Battery</th>
<th>Overall CAT4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average A–G</td>
<td>5.0</td>
<td>5.0</td>
<td>5.3</td>
<td>5.5</td>
<td>3.0</td>
</tr>
</tbody>
</table>

However, most tests show the 90% chance or confidence bands. For values around the average, the 90% confidence band is as follows:

<table>
<thead>
<tr>
<th>CAT4 level</th>
<th>Verbal Reasoning Battery</th>
<th>Quantitative Reasoning Battery</th>
<th>Non-verbal Reasoning Battery</th>
<th>Spatial Ability Battery</th>
<th>Overall CAT4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average A–G</td>
<td>+/- 8</td>
<td>+/- 8</td>
<td>+/- 9</td>
<td>+/- 9</td>
<td>+/- 5</td>
</tr>
</tbody>
</table>

For example, for an average-performing student with a verbal SAS of 100, there is a 90 per cent chance that the true verbal score is in a range from 92 to 108.

Relationship between CAT3 and CAT4 scores

A study was carried out comparing the national distribution of CAT3 and CAT4 standard scores in autumn 2011 for CAT Level D. Results show that there is no significant difference. So, for example, a student getting a verbal SAS of 90 on CAT3 is also likely to obtain a verbal SAS of 90 using CAT4. This is not surprising as the national averages of SAS scores based on our database of over 250,000 students who use Level D every year have not changed significantly in each of the last ten years. The national average CAT3 standard score was 100 back in 2001 and the average standard score for both CAT3 and CAT4 Level D tests in 2011 was approximately 100.
CAT and national test indicators

There is a significant and positive correlation between students’ CAT scores and their school performance, as measured by national tests or public examinations.

The link may be assumed to exist because much school activity is concerned with the application of reasoning abilities in the initial learning of curriculum content, and then building on and recombining existing knowledge as learning progresses.

Indicator reports are available for end of KS2, KS3, GCSE, AS level, A level and Scottish Standard and Intermediate Grade examinations. The indicators are derived by tracking the progress of large and representative samples of students over time. Through this process, we can determine the actual relationship between the CAT and students’ subsequent attainment in national tests and examinations. By carrying out a statistical analysis of the matched datasets, we are able to provide indicated or typical outcomes for each student based on his or her CAT scores. These indicators can also be aggregated to provide indicated outcomes for classes or whole year groups.

The indicators show the probability of a student obtaining a given grade/level for a subject based on his or her CAT scores. The reports also show the ‘most likely grade/level achieved’ and a more challenging target ‘if challenged, grade/level achieved’. Around 25% of students are likely to achieve the more challenging target.

Indicators are updated regularly to keep in line with national trends of improving performance in national tests and also changes in national examinations.

Paper–digital comparison study

Two studies were conducted to see if there was a difference in the way students scored between the paper and digital editions of CAT4.

- The overall numbers of students doing the digital and paper versions in the standardisation sample were large. This allowed a study to be undertaken looking at the relative difference in scores between those students doing paper and digital editions during the CAT4 standardisation.

- The second study, also in autumn 2011, looked at the results of an equivalence study conducted in three year groups. Around 1,300 students in this study did both the paper and digital versions of the CAT4 Non-Verbal Battery for Levels A, B and E. To reduce practice effects, around half the students completed the paper edition first followed by digital while the other half took the digital edition first followed by paper.
The results of both studies have shown small differences in scores, with students completing the paper edition scoring slightly higher on average than on the digital edition. For example, the Non-verbal Reasoning Battery Level E paper raw score is, on average, half a mark higher than for the digital edition and around 1 mark higher for Level B.

The normative scores have therefore been adjusted to take into account any differences in the way students respond digitally or on paper.

More detailed technical information can be found on the CAT4 website at www.cat4support.com.
APPENDICES

Appendix A: CAT4 Time Chart
Appendix B: Sample letters
Appendix C: Articles of interest to CAT4 users
Appendix D: Group Header Sheet
CAT4 Time Chart

Name of administrator: ... Date:

School: .. Class:

<table>
<thead>
<tr>
<th>Test</th>
<th>Allocated time (mins)</th>
<th>Start time</th>
<th>Stop time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure Classification</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure Matrices</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbal Classification</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbal Analogies</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number Analogies</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number Series</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure Analysis</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure Recognition</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

[note information about the testing session, for example any interruptions, or any other relevant details]
Sample letters and guidance for communicating with parents or carers

Guidance and sample letters are given here to support your communications with parents or carers both before and after testing with CAT4.

Pre-testing

Many schools and other establishments choose to communicate with parents or carers before testing takes place, to inform them of their plans and give an overview of what the students will be doing.

It is likely that any communication with parents or carers prior to testing will be kept intentionally brief, as shown in the pre-testing sample letter provided on the next page. However, the following list provides some guidelines to assist with your communications, whether orally or in writing.

- Stress the school’s commitment to identifying and addressing the needs of each individual student in order to understand and maximise their potential.

- Explain that the test the students will take is delivered either in paper or digital format and that there are four parts to CAT4, each measuring the students’ reasoning skills in a different area.

- Explain that testing with CAT4 is part of the school’s regular assessment regime and that all the students in the year group(s) will be tested.

- Emphasise that no preparation can be done for the CAT4 test and so it is important that the students do not become anxious as they all have an equal chance to demonstrate their reasoning ability.

- Parents or carers should understand that information from CAT4 forms part of the process of supporting their children and helping them achieve their potential. Other information, including teachers’ own assessments, is very important. Results from CAT4 will be used in combination with a range of data to set targets for learning and identify any particular need, for example a need for support in literacy.

- Parents or carers should be made aware that they will be updated after the assessment so they know how their child has done and the school’s plans, if any, for further follow-up.

Emphasise that no preparation can be done for the CAT4 test
Pre-testing sample letter

Dear Parent or Carer,

In school, we wish to assess all our students to see what their needs are and how we can best help them learn and achieve. As part of this process, we will be administering the Cognitive Abilities Test (CAT) to all students in Year [X].

CAT is made up of a series of short tests which assess a student’s reasoning (thinking) abilities in key areas that support educational development and academic attainment. No preparation is necessary; it is important that your child does not become anxious as no pre-learning or knowledge is needed to complete the tests.

CAT has many uses and can help your child and his/her teachers to plan appropriately and set targets for different Key Stages and for GCSE and A level (or Standard and Intermediate Grade exams).

After the assessment is finished, we will be in touch again with results and our plans, if any, for further follow-up.

If you have any queries or concerns, please contact us.

Yours faithfully,

[School/establishment name]

Post-testing

An optional report on the individual student is available to support feedback to parents or carers.

This Individual report for parents strips away much of the technical detail that is included in the Group report for teachers and the Summary report for senior leaders, simply presenting the student’s results as below average, average or above average for each part of CAT4. A series of statements, tailored for parents, is included to explain what the results mean (in terms of the profile of learning bias demonstrated by the student on the test) and how learning may be affected. Recommendations focus on how the parent or carer can work with the school to support the student at home.

In addition to the Individual report for parents, you may wish to provide a supporting letter explaining the process and outcomes. The following list provides you with guidelines to assist with this communication, whether orally or in writing.
Our post-testing guidelines and post-testing sample letter provided below overlap significantly with those already provided for pre-testing. This is because many schools and establishments may choose not to contact parents or carers at all prior to testing taking place, meaning a full explanation is required post-testing. In the case of communication with parents or carers both before and after testing, you may choose to edit the post-testing sample letter to avoid such repetition.

- Stress the school’s commitment to identifying and addressing the needs of each individual student in order to understand and maximise their potential.

- Explain that there are four component parts to CAT4, each measuring the child’s reasoning skills in a different area.

- Explain that testing with CAT4 is part of the school’s regular assessment regime and that all students in the year group(s) have been tested.

- You may wish to summarise in the letter the specific outcomes and recommendations from the test for that individual student (which are also shown on the Individual report for parents).

- Parents or carers should be reassured that, if they have any questions or concerns or would like any further advice on how best to support their child, then they should contact the school.

Post-testing sample letter

Dear Parent or Carer,

In school, we wish to assess all our students to see what their needs are and how we can best help them learn and achieve.

As part of this process, your child has completed the Cognitive Abilities Test (CAT), which is a series of short tests to assess a student’s reasoning (thinking) abilities in key areas that support educational development and academic attainment.

A copy of the Individual report for parents is included for you to look at.1 This shows your child’s results and describes what these mean in terms of the ways in which he/she will learn best and how you can support him/her at home.

[If the report is not included a relevant short extract can be included instead.]

If you have any queries or concerns please contact us.

Yours faithfully,

[School/establishment name]

1 If possible, it is helpful to parents to discuss the report with them on a suitable occasion before sending it out.
The articles in this Appendix (Appendix C) illustrate the relevance of spatial testing, thereby highlighting the importance of recognition and testing of spatial intelligence in assessing students’ development in CAT4.
Recognizing Spatial Intelligence

Our schools, and our society, must do more to recognize spatial reasoning, a key kind of intelligence

By Gregory Park, David Lubinski and Camilla P. Benbow, Scientific American, November 2, 2010, online

Ninety years ago, Stanford psychologist Lewis Terman began an ambitious search for the brightest kids in California, administering IQ tests to several thousand of children across the state. Those scoring above an IQ of 135 (approximately the top 1 percent of scores) were tracked for further study. There were two young boys, Luis Alvarez and William Shockley, who were among the many who took Terman’s tests but missed the cutoff score. Despite their exclusion from a study of young “geniuses”, both went on to study physics, earn PhDs, and win the Nobel prize.

How could these two minds, both with great potential for scientific innovation, slip under the radar of IQ tests? One explanation is that many items on Terman’s Stanford-Binet IQ test, as with many modern assessments, fail to tap into a cognitive ability known as spatial ability. Recent research on cognitive abilities is reinforcing what some psychologists suggested decades ago: spatial ability, also known as spatial visualization, plays a critical role in engineering and scientific disciplines. Yet more verbally loaded IQ tests, as well as many popular standardized tests used today, do not adequately measure this trait, especially in those who are most gifted with it.

Spatial ability, defined by a capacity for mentally generating, rotating, and transforming visual images, is one of the three specific cognitive abilities most important for developing expertise in learning and work settings. Two of these, quantitative and verbal ability, are quite familiar due to their high visibility in standardized tests like the Scholastic Aptitude Test (SAT). A spatial ability assessment may include items involving mentally rotating an abstract image or reasoning about how an illustrated mechanical device functions. All three abilities are positively correlated, such that someone with above average quantitative ability also tends to have above average verbal and spatial ability. However, the relative balance of specific abilities can vary greatly between individuals. While those with verbal and quantitative strengths have opportunities to be identified by standardized tests or school performance, someone with particularly strong spatial abilities can go unrecognized through these traditional means.

A recent review, published in the Journal of Educational Psychology, analyzed data from two large longitudinal studies. Duke University’s Jonathan Wai worked with two of us (Lubinski and Benbow) and showed how neglecting spatial abilities could have widespread consequences. In both studies, participants’ spatial abilities, along with many others, were measured in adolescence. The participants with relatively strong spatial abilities tended to gravitate towards, and excel in, scientific and technical fields such as the physical sciences, engineering, mathematics, and computer science. Surprisingly, this was after accounting for quantitative and verbal abilities, which have long been known to be predictive of educational and occupational outcomes. In a time when educators and policy-makers are under pressure to increase the number of students entering these fields, incorporating knowledge of spatial ability into current practices in education and talent searches may be the key to improving such efforts.

The first source of data reviewed by Wai was a massive longitudinal study, Project Talent. While several studies have investigated the role of spatial abilities in tasks involving visual searching or path finding, Wai and colleagues focused on the relationship between spatial abilities and interests, finding that adolescents with strong spatial abilities also show greater interest than most in working with their hands, manipulating and tinkering with tangible things. While building, repairing, and working with inanimate objects might bore some, spatially gifted adolescents reported a preference for such activities. When those same individuals were contacted again in their late 20s, they had pursued and persisted in scientific and technical fields, earning bachelor’s, Master’s and doctoral degrees in these areas at higher rates than their peers. These findings suggest that the same child who likes to dismantle and reassemble old electronics may be particularly well-suited for doing the same in adulthood with electrons, molecules, or microchips.
While those with verbal and quantitative strengths enjoy more traditional reading, writing, and mathematics classes, there are currently few opportunities in the traditional high school to discover spatial strengths and interests. Instead, students who might benefit from hands-on, technical material must find an outlet on their own time, or just wait until their post-secondary education. And, in the worst case, they may drop out of the educational system altogether.

The second source of data reviewed by Wai came from a large-scale talent search. Talent searches, similar to Terman’s project, use psychometric assessments to identify youths with exceptional talents, usually in quantitative or verbal ability, that might not be recognized in a traditional classroom setting. One of the goals of modern talent searches is to provide the additional educational opportunities and experiences needed by these students for optimal development. Adolescents with exceptionally high quantitative ability, for example, can benefit greatly by additional instruction or an accelerated mathematics curriculum that provides them with developmentally appropriate material, such as advanced calculus rather than algebra. When youths identified by talent searches are appropriately accelerated according to their intellectual strengths, they report higher satisfaction with their education as adults.

The talent search data reviewed by Wai was collected from the Study of Mathematically Precocious Youth (SMPY), a talent search initiated at Johns Hopkins University in the early 1970s. SMPY identified intellectually precocious adolescents at or before age 13 based on scores on the quantitative and verbal subtests of the SAT. After identification, many of these same adolescents were administered measures of spatial ability. Although these participants were selected based on their exceptional quantitative and verbal ability, there was wide variability in the spatial abilities within the sample.

These participants have now been followed for over 25 years, and the variability in spatial abilities was found to be predictive of educational and occupational outcomes, even after accounting for verbal and quantitative abilities. Similar to the subjects from Project Talent, the SMPY participants who earned bachelors, Master’s, and doctoral degrees in science and engineering fields had especially strong spatial abilities compared to the rest of the sample. The same trend was found among those who had occupations in these fields at age 33.

Due to the neglect of spatial ability in school curricula, traditional standardized assessments, and in national talent searches, those with relative spatial strengths across the entire range of ability constitute an under-served population with potential to bolster the current scientific and technical workforce. Alvarez and Shockley found their way despite being missed by the Terman search, and each had considerable impact on technology in the last century. But how many more Alvarezes and Shockleys have we missed? Given the potential of scientific innovations to improve almost all aspects of modern life, missing just one is probably one too many.

ABOUT THE AUTHOR(S)

Gregory Park is a PhD student in the Department of Psychology and Human Development at Vanderbilt University. David Lubinski is professor of psychology and co-director of the Study of Mathematically Precocious Youth (SMPY) at Vanderbilt University. Camilla P. Benbow is Patricia and Rodes Hart Dean of Peabody College of Education and Human Development and co-director of SMPY at Vanderbilt University.

[Permalink: www.scientificamerican.com/article.cfm?id=recognizing-spatial-intel]

Reproduced with permission. Copyright ©2010 Scientific American, a division of Nature America, Inc. All rights reserved.
Picture This: Increasing Maths and Science Learning by Improving Spatial Thinking

The following article has been slightly adapted for a UK audience.

By Nora S. Newcombe

Nora S. Newcombe is a professor of psychology at Temple University and the principal investigator of the Spatial Intelligence and Learning Center (which is funded by the National Science Foundation). She has been a visiting professor at the University of Pennsylvania, Princeton University, and the Wissenschaftskolleg in Berlin. She is also a past president of the Developmental Psychology division of the American Psychological Association.

Albert Einstein’s scientific accomplishments so impressed the world that his name is shorthand for intelligence, insight, and creativity. To be an Einstein is to be inconceivably brilliant, especially in maths and science. Yet Albert Einstein was famously late to talk, and he described his thinking processes as primarily non-verbal. ‘The words or the language, as they are written or spoken, do not seem to play any role in my mechanism of thought,’ he once said. ‘[There are] more or less clear images.’¹ Research on his brain, preserved after death, has seemed to support his claim of thinking in spatial images: Sandra Witelson, a neuroscientist in Canada, found that his parietal cortex, an area of the brain used for spatial and mathematical thinking, was unusually large and oddly configured,² and likely supported him in imagining the universe in innovative ways.

Einstein was unique, but he certainly was not the only scientist to depend on his ability to think spatially. Watson and Crick’s discovery of the structure of DNA, for example, was centrally about fitting a three-dimensional spatial model to existing flat images of the molecule. The fact is, many people who work in the sciences rely on their ability to think spatially, even if they do not make grand discoveries. Geoscientists visualise the processes that affect the formation of the earth. Engineers anticipate how various forces may affect the design of a structure. And neurosurgeons draw on MRIs to visualise particular brain areas that may determine the outcome of a surgical procedure.

So, is spatial thinking really a key to science, technology, engineering, and mathematics – the so-called STEM disciplines? Yes. Scores of high quality studies conducted over the past 50 years indicate that spatial thinking is central to STEM success. One of the most important studies is called Project Talent; it followed approximately 400,000 people from their secondary school years in the late 1950s to today.³ It found that people who had high scores on spatial tests in secondary school were much more likely to major in STEM disciplines and go into STEM careers than those with lower scores, even after accounting for the fact that they tended to have higher verbal and mathematical scores as well. Similar results have been found in other longitudinal studies: one began in the 1970s and tracked the careers of a sample of gifted students first studied in their early years at secondary school;⁴ another began in the 1980s with observing the block play of preschoolers and followed their mathematics learning through secondary school.⁵

In short, the relation between spatial thinking and STEM is a robust one, emerging for ordinary students and for gifted students, for men and for women, and for people who grew up during different historical periods. Spatial thinkers are likely to be more interested in science and maths than less spatial thinkers, and are more likely to be good enough at STEM research to get advanced degrees.

So, would early attention to developing children’s spatial thinking increase their achievement in maths and science, and even nudge them toward STEM careers? Recent research on teaching spatial thinking suggests the answer may be yes.
Tests of Spatial Thinking

The following four tests were used in the Project Talent study. Here, each is briefly described and a sample item is provided. Answers for the sample items are given at the end of the article.

– EDITORS

1. **Three-dimensional spatial visualization:**
 Each problem in this test has a drawing of a flat piece of metal at the left. At the right are shown five objects, only one of which might be made by folding the flat piece of metal along the dotted lines. You are to pick out the one of these five objects which shows just how the piece of flat metal will look when it is folded at the dotted lines. When it is folded, no piece of metal overlaps any other piece or is enclosed inside the object.

2. **Two-dimensional spatial visualization:** In this test each problem has one drawing at the left and five similar drawings to the right of it, but only one of the five drawings on the right exactly matches the drawing at the left if you turn it around. The rest of the drawings are backward even when they are turned around. For each problem in this test, choose the one drawing which, when turned around or rotated, is exactly like the basic drawing at the left.

3. **Mechanical reasoning:** This is a test of your ability to understand mechanical ideas. You will have some diagrams or pictures with questions about them. For each problem, read the question, study the picture above it, and mark the letter of the answer on your answer sheet.

While wheel X turns round and round in the direction shown, wheel W turns
 A. in direction A.
 B. in direction B.
 C. first in one direction and then in the other.

4. **Abstract reasoning:** Each item in this test consists of a set of figures arranged in a pattern, formed according to certain rules. In each problem you are to decide what figure belongs where the question mark is in the pattern.... The items have different kinds of patterns and different rules by which the drawings change.

COPYRIGHT © 2009 BY THE AMERICAN PSYCHOLOGICAL ASSOCIATION. REPRODUCED WITH PERMISSION. SPATIAL ABILITY FOR STEM DOMAINS: ALIGNING OVER 50 YEARS OF CUMULATIVE PSYCHOLOGICAL KNOWLEDGE SOLIDIFIES ITS IMPORTANCE.

DOI: 10.1037/A0016127. THE USE OF APA INFORMATION DOES NOT IMPLY ENDORSEMENT BY APA.
What Do We Mean by Spatial Thinking?

So far, we have been casual in using the term ‘spatial thinking.’ But what do we really mean by it? Spatial thinking concerns the locations of objects, their shapes, their relations to each other and the paths they take as they move. All of us think spatially in many everyday situations: when we consider rearranging the furniture in a room, when we assemble a bookcase using a diagram or when we relate a map to the road ahead of us. We also use spatial thinking to describe non-spatial situations, such as when we talk about being close to a goal or describe someone as an insider.

This general description is helpful but in conducting research, precise definitions are necessary. For the Project Talent study, spatial thinking was defined by the four tests used to assess it; a sample item from each of those four tests is shown in the box on page 13. The first test asks us to imagine folding a two-dimensional shape into a three-dimensional one. The second asks us to mentally rotate a two-dimensional shape. The third asks us to imagine mechanical motion. The fourth asks us to see spatial patterns and progressions.

Tests like these four have been around for a century or so, and they remain useful assessments of spatial ability. But they do not cover the full range of abilities that fall under the term ‘spatial thinking,’ so today’s researchers are working on developing new assessments. For example, one very different kind of spatial thinking involves navigating around the wider world. Many people think that, to get where we are heading, we need to be able to form a mental map of the environment. It appears that some of us are much better than others at forming these integrated representations. Spatial thinking of this kind may also be relevant to STEM success, but this idea has not yet been tested, largely because we lack good tests of navigation ability that can be given to large samples of students. Computer technology may soon allow such assessments.

To really understand what spatial thinking is, we must be clear about what it is not. First, spatial thinking is not a substitute for verbal or mathematical thinking. Those who succeed in STEM careers tend to be very good at all three kinds of thinking. Second, given the popularity of the notion that students have learning styles – i.e., that they are visual, auditory, or kinesthetic learners – it’s important to understand that spatial thinking is not a learning style. The truth is that there is virtually no support for learning styles in the research literature. While students may have preferences, all of us (with very rare exceptions) learn by seeing, hearing, and doing. Likewise, all of us (with very rare exceptions) think verbally, mathematically, and spatially. So teachers should be trying to provide students with the content knowledge, experiences, and skills that support development of all three ways of thinking.

Can Spatial Thinking Actually Be Improved?

Since spatial thinking is associated with skill and interest in STEM fields (as well as in other areas, such as art, graphic design, and architecture), the immediate question is whether it can be improved. Can we educate children in a way that would maximise their potential in this domain? Americans often believe that their abilities are fixed, perhaps even at birth; it is not uncommon to hear that a person was born with a gift for mathematics or a difficulty in learning foreign languages. But there is mounting evidence that this is not the case. Abilities grow when students, their parents, and their teachers believe that achievement follows consistent hard work and when anxiety about certain areas, such as maths, is kept low.

What about spatial thinking in particular – is it malleable? Definitely. We have known for some time that primary school children’s spatial thinking improves more over the school year than over the summer months. A recent meta-analysis (which integrated the results of all the high quality studies of spatial malleability conducted over the past few decades) showed substantial improvements in spatial skill from a
wide variety of interventions, including academic coursework, task-specific practice and playing computer games that require spatial thinking, such as Tetris (a game in which players rotate shapes to fit them together as they drop down the screen). Furthermore, these improvements were durable, and transferred to other tasks and settings. For example, when undergraduates were given extended, semester-long practice on mental rotation, through taking the test repeatedly and also through weekly play of Tetris, training effects were massive in size, lasted several months, and generalised to other spatial tasks such as constructing three-dimensional images from two-dimensional displays. Along similar lines, undergraduates who practised either mental rotation or paper folding daily, for three weeks, showed transfer of practice gains to novel test items, as well as transfer to the other spatial tasks they had not practised. Spatial training has also been found to improve educational outcomes, such as helping college students complete engineering degrees.

While many studies have found that spatial thinking can be improved, researchers have found some important differences between high and low ability participants. For low ability participants, there is an initial hump to get over. They improve slowly, if at all, for the first half-dozen or so sessions. But if they persevere, faster improvement comes, so it’s important that students (and teachers) not give up. High ability participants do not have an initial hump, but they still can improve. Even people who are spatially proficient turn out to be not nearly as proficient as they could be, and they can attain even higher levels of excellence through fun activities like playing Tetris. While playing Tetris may not fit into the school day, it might be offered in after-school settings or be suggested to students as a weekend or summer activity (in moderation, of course). (Other spatial thinking activities that fit better into academic studies, such as why the earth has seasons, are discussed later.)

In addition to practising spatial thinking tasks like those shown in the box on page 13, well-conceived symbolic representations, analogies and gestures are also effective in improving one’s spatial thinking ability. Let’s discuss each of these briefly.

One of the distinctive characteristics of human beings is that they can use symbolic representations, such as language, maps, diagrams, sketches, and graphs. Spatial language is a powerful tool for spatial learning. Babies learn a spatial relation better when it is given a name, preschoolers who understand spatial words like ‘middle’ perform better on spatial tasks than those who do not, and preschool children whose parents use a greater number of spatial words (like outside, inside, under, over, around, and corner) show better growth in spatial thinking than children whose parents do not use such language. Adults’ spatial thinking is also enhanced by spatial language (e.g., the word parallel helps pick out an important spatial concept), as is their thinking about concepts, such as time, that are often described with spatial metaphors (e.g., far in the future).

Along similar lines, the ability to use maps can transform our thinking, allowing us to draw conclusions that would be hard to arrive at without maps. A famous example is seeing the relation between drinking polluted water and getting cholera; in the 1800s, a map of water pumps in London superimposed on a map of cholera cases made the case for a relationship. Like maps, diagrams, sketches and graphs also allow us to make inferences by supporting our spatial thinking. For example, a graph of how boys and girls change in height over childhood and adolescence shows us very clearly that, on average, girls have an earlier growth spurt and finish growing earlier.

In addition to being able to think symbolically, humans have a distinctive ability to think analogically, that is, to see relational similarities between one situation and another. People can learn through noticing analogies, that is, by comparing two situations and noting their common relational structure (as when we compare the structure of the atom to the structure of the solar system). This process facilitates learning in children, including spatial learning, mathematical insight, and scientific reasoning. Thus, an additional way to get children to develop spatial reasoning abilities is to point out and highlight key comparisons they should be making.

** [Researchers are not sure why this is. It could be that those who are not good at spatial thinking have not yet developed mental strategies for dealing with spatial problems. So, in the initial stage when it appears that they are not improving, they could be developing and testing strategies. Then, once they have hit on an effective strategy, they start to improve and continue improving as they practice. In contrast, high-ability participants already have effective mental strategies and are simply becoming better through practice.]
People also gesture as they think, and gesture has turned out to be not only a window into how thinking occurs, but also a powerful tool for improving various kinds of learning. Gestures provide a window into learners’ minds and offer information about whether a learner is ready to improve on a task. But gesture can also play a more active role in learning, in two ways. First, when teachers use gesture in instruction, children often learn better than when taught with speech alone. Second, when children gesture as they explain a problem, either prior to or during instruction, they learn better than if they do not gesture. Gesture is a powerful means of reflecting and communicating about spatial knowledge. Gesture has the potential to be a particularly powerful instructional tool in the spatial domain because it is particularly good at capturing spatial relationships among objects. For example, when talking about how the earth turns and revolves around the sun, teachers can gesture to capture those relationships.

Overall, our bag of tricks for enhancing spatial thinking is quite full. But there is more to learn. We know that practice, symbolic representations, analogies and gestures all improve spatial thinking, but we don’t know which of these approaches is most effective. Teachers will have to use their best judgment and fit spatial thinking into the school day as best they can. To help, I offer some suggestions at the end of this article.

What about Sex Differences?

Sex differences are often the first thing people want to talk about when they consider spatial thinking. Three big questions usually come to mind: Do sex differences exist? If so, how big are they? What causes them – are they biological or environmental? Research has found sex differences in spatial thinking ability, both among average men and women, and among the very highest achievers. For some spatial tests, these differences are large. However, while these differences do exist, we need to remember that average sex differences do not tell us about individual performance – some girls have strong spatial skills and some boys are lacking these skills. Sex differences in spatial thinking are no barrier to women’s success in the STEM disciplines as long as educators take the steps to ensure that all students, of both sexes, acquire the spatial thinking skills they need.

The question about causes is a tricky one. The assumption behind this question is usually that, if biological, the difference is immutable, whereas if environmental, it could be reduced or even eradicated. There are two problems with the question, however. The first problem is with the assumption behind it: biological causation does not imply immutability and environmental causation does not guarantee changeability. The second problem is that we don’t know the answer. A specially assembled team of experts with various takes on the problem recently concluded that there was evidence supporting both kinds of influences, with the additional possibility that the influences interacted (as when experience alters brain structures).

Since spatial thinking can be improved, the important fact is not the causation of sex differences but the fact that girls (and boys) can improve. Some have suggested special training for females to help them catch up to males, but as educators we want all students to do their best. That means we may not close the gap: meta-analyses have found that the sexes generally improve in parallel and thus the sex difference continues even with training (although some exceptions have been reported in which performance by men and women converged). Nevertheless, even if the gap does not close, many women (and men) can and will come to perform well above threshold levels for success in the STEM disciplines, at which point other factors such as persistence, communication and creativity may be more important than spatial ability.

What Does This Mean for Teachers?

Since spatial cognition is malleable, spatial thinking can be fostered with the right kind of instruction and technology. As we have seen, spatial thinking improves during the school year more than over the summer months, showing that teachers are helping students already. But what exactly should we be doing to help them improve even more? Unfortunately, precise answers are not yet possible. The National Academies’ report Learning to Think Spatially pointed out that we still lack specific knowledge of what kinds of experiences lead to improvement, how to infuse spatial thinking across the curriculum, or whether (and how best) to use new technologies such as
APPENDIX C: ARTICLES OF INTEREST

Geographic Information Systems, especially with young children. What kinds of teaching best support spatial learning? Are these kinds of teaching different at different ages, at different socioeconomic status levels, or for girls and boys? Developing and testing curricula in a scientific way can be a slow process, and much remains to be done to be absolutely sure of our ground. However, we are beginning to have some good ideas about where to start, especially with preschool and primary school students.

1 Teachers (and parents) need to understand what spatial thinking is, and what kinds of pedagogical activities and materials support its development. Recall that spatial thinking involves noticing and remembering the locations of objects and their shapes and being able to mentally manipulate those shapes and track their paths as they move. Because spatial thinking is not a subject, not something in which children are explicitly tested, it often gets lost among reading, mathematics and all the other content and skills specified in state standards. Teachers need to be able to recognize where they can infuse it into the school day. For example, teachers could use the cardinal directions (north, south, east and west) to talk about how to get to the cafeteria or playground, or use words like parallel and perpendicular when possible.

2 Teachers at all levels need to avoid infusing students with anxiety about spatial tasks. In general, anxiety about doing a task can impede performance, at least in part by occupying valuable mental space in working memory. When you spend a lot of time worrying that you won’t do well, you lack the cognitive resources to actually concentrate on the work, a sad example of a self-fulfilling prophecy. Research with 6- to 8-year-olds in the Chicago Public Schools has recently shown that this vicious circle is evident for spatial thinking as well as for other areas like maths: children who worry about not doing well perform more poorly than children who do not have such anxiety. Thus, as is also true for other areas in teaching, teachers should avoid presenting spatial tasks as difficult challenges on which some people may not do well, or presenting students’ performance on these tasks as indicative of their underlying spatial abilities. Instead, teachers should emphasize that the tasks can be enjoyable and useful, and that they can be mastered with some effort and time.

3 In the preschool years, teachers (and parents) need to encourage, support and model engagement in age-appropriate spatial activities of a playful nature. Preschool children need a good balance of play and formal instruction. Fortunately, there is a wealth of spatial material available for preschool play, much of which can be further leveraged by a teacher with knowledge of the processes of spatial learning. Here are some specific ideas that could fit into most preschool settings:

- Select spatially challenging books for young children. For example, Zoom is a book in which attention continually zooms in to finer and finer levels of detail. Verbal and gestural support for children in dealing with the book’s conceptual and graphic challenges is correlated with children’s scores on spatial tests.

- Use odd-looking as well as standard examples when teaching the names of geometric shapes such as circle, square and triangle (e.g. a tipped, skinny, scalene triangle as well as an equilateral triangle pointing up). Showing these kinds of shapes supports learning that triangles are any closed figure formed by three intersecting straight lines.

- Teach spatial words such as out, in, outside, inside, middle, between, here, there, front, back, side, top, bottom, up, down, under, over, around, tall, high, short, low, line (it) up, row, next (to) and corner. Learning spatial words can be enhanced by using gestures that highlight the spatial properties being discussed.

- Encourage young children to gesture. Research has found that when children are asked whether two shapes can be fitted together to make another shape, they do significantly better when encouraged to move their hands to indicate the movements that would be made in pushing the shapes together. Some children do this spontaneously, but children who do not will perform better when asked to gesture.

- Ask children to imagine where things will go in simple ‘experiments.’ For example, preschoolers are prone to think that dropped objects will appear directly below where they were released, even
when they are dropped into a twisting tube with an exit point far away. But, when asked to visualise the path before responding, they do much better. Simply being asked to wait before answering does not help – visualization is key.46

- Do jigsaw puzzles with children; they have been found to predict good spatial thinking, especially when coupled with spatial language (e.g., Can you find all the pieces with a flat edge?).47 Similarly, play with blocks is a great activity in itself, and it increases use of spatial language.48

- Use maps and models of the world with children as young as 3.49

- Develop analogies to help young children learn scientific ideas, such as the principle of how a brace supports a building.50 Consider the two photos below. In the one on top, comparing the two structures is relatively easy because the only difference is whether the brace is diagonal or horizontal, but on the bottom the comparison is more difficult because the two structures differ in several ways. When children shake these structures to see how much they wiggle, they are much more likely to conclude that a diagonal piece increases stability when interacting with the display on top.

4 In the primary school years, teachers need to supplement the kinds of activities appropriate for preschoolers with more focused instruction in spatial thinking. Playful learning of the sort that occurs in preschool can continue to some extent in primary school; activities such as block building, gesturing, reading spatially challenging books, etc., continue to develop spatial skills in older children too.51 But as children get older, they can also benefit from more focused lessons. Mathematics is a central subject in which spatial thinking is needed, because space provides a concrete grounding for number ideas, as when we use a number line, use base-10 blocks, or represent multiplication as area. Here are some specific ideas for children in nursery through Y6/7:

- Highlight spatial elements in mathematics lessons. Measurement, for example, can be difficult for children to master, especially when the object to be measured is not aligned with the end of a ruler. Children often make mistakes such as counting hash marks beginning with 1, thus getting an answer that is one unit too many. When teaching measurement in early primary, teachers can consider using a technique in which the unit between hash marks on a ruler is highlighted as the unit of measurement.52 As shown in the illustration below, children can work with small unit markers coordinated with larger pieces to highlight how to determine units.
• Add mapping skills, when possible, to geography lesson for older primary students. Some ideas can be found in Phil Gersmehl’s book, Teaching Geography, which is based in part on cognitive science.53

• Use well-crafted analogies so that comparisons will highlight essential similarities and differences. For example, students can compare diagrams of animal and plant cells to see similarities and differences.54

• Ask children from around the ages of 9 to 14 to make sketches to elaborate on their understanding of topics such as states of matter, or force and motion.55 For example, they can be asked to draw water molecules in the form of ice, liquid, or vapor.

• Suggest beneficial recreational activities, such as photography lessons (to develop a sense of shifting viewpoints and changes in scale54), origami (to deepen their knowledge and skill in combining shapes) and JavaGami57 (software for creating polyhedra) and video games like Tetris.58

Spatial thinking is important, probably as important as verbal and mathematical thinking, for success in science, technology, engineering and mathematics. Furthermore, it can be taught and something we do in schools is already associated with improving it. Yet we can do better. The need to develop students’ spatial thinking is currently not widely understood. We already have some excellent techniques for developing it, through practice, language, gesture, maps, diagrams, sketching and analogy. Systematically building these techniques into the curriculum could yield important dividends for education.

Endnotes

6. Wai, Lubinski, and Benbow, ‘Spatial Ability for STEM Domains.’

35. Uttal et al., ‘Malleability of Spatial Cognition.’

47. Susan Levine, Kristin Ratliff, Janellen Huttenlocher, and Joanna Cannon, ‘Early Puzzle Play: A Predictor of Preschooler’s Mental Rotation Skill,’ _Developmental Psychology_ (under review).

Answers to the sample test items on page 13:

Group Header Sheet

This Appendix shows a sample Group Header Sheet. This is for reference only and is not suitable to send with a batch of Answer Sheets. Group Header Sheets are supplied with your Answer Sheets.
Appendix D: Group Header Sheet

Scoring and Analysis Service

Introduction

A properly completed Group Header Sheet must accompany each group of Answer Sheets sent for scoring. Its purpose is to identify the school/college and the group of students to which the Answer Sheets relate, and to indicate which features of the Scoring and Analysis Service the school/college wishes to use. If you should require additional Group Header Sheets, please contact our Customer Support Team on 0845 602 1937 (option 1) and we will supply them to you.

What is available?

The Scoring and Analysis Service offers you a variety of ways of combining and presenting the scores that your students have achieved in the Cognitive Abilities Test. The basic price entitles you to the standard service, but there are also various chargeable options available (see below).

The use of the word ‘group’ in the following listings refers to the batch of test papers that accompanies each Group Header Sheet. A ‘group’ consists of all the CAT4 Answer Sheets for which a separate analysis is required. This is likely to be either a class or year group within a single school/college, but other groupings, such as tutor groups, are permissible; the aim is for the school/college to choose a system which best suits their own further use of the data.

The standard service

<table>
<thead>
<tr>
<th>Title of report</th>
<th>Description and scores provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group report for teachers</td>
<td>Student listing of all scores with analysis by battery. Student profiles with listing of students in each profile category. Indicators as appropriate for each level of CAT4. SAS, GR</td>
</tr>
</tbody>
</table>

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description and scores provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual report for teachers</td>
<td>Breakdown of scores for each student. Individual student profile with narrative description of profile and implications for teaching and learning. Indicators as appropriate for each level of CAT4. SAS, GR, NPR, ST</td>
</tr>
<tr>
<td>Individual report for students</td>
<td>Presentation of scores as below average, average and above average. Narrative description of profile and its implications for the student’s learning. Indicators as appropriate for each level of CAT4, displayed in a student-friendly way.</td>
</tr>
<tr>
<td>Individual report for parents</td>
<td>Presentation of scores as below average, average and above average. Narrative description of profile and recommendations for supporting the student at home. Indicators as appropriate for each level of CAT4, displayed in a parent-friendly way.</td>
</tr>
<tr>
<td>Summary report for senior leaders</td>
<td>Tabular and graphical analysis of scores by battery, gender and other criteria specified by the customer. Distribution of profile types within the group and explanation of each profile type. Summary indicators and likely distribution of levels/grades across the group as appropriate for each level of CAT4. SAS</td>
</tr>
<tr>
<td>Summary presentation for senior leaders</td>
<td>Extracted from Summary report for senior leaders to create a ready-made PowerPoint® presentation for whole staff, governors and other interested parties. SAS</td>
</tr>
<tr>
<td>CSV report</td>
<td>CSV version of all raw/core data ideal for import into other systems. This will enable further analysis to be done by the customer. SAS, GR, NPR, ST</td>
</tr>
</tbody>
</table>

Key to terminology

- **SAS**: The Standard Age Score (SAS) is based on the student’s raw score which has been adjusted for age and placed on a scale that makes a comparison with a nationally representative sample of students of the same age across the UK. The average score is 100.
- **GR**: The Group Rank (GR) shows how each student has performed in comparison to those in the defined group. The symbol = represents joint ranking with one or more other students.
- **NPR**: The National Percentile Rank (NPR) relates to the SAS and indicates the percentage of students obtaining any particular score. NPR of 50 is average. NPR of 5 means that the student’s score is within the lowest 5% of the national sample, NPR of 95 means that the student’s score is within the highest 5% of the national sample.
- **ST**: The Stanine (ST) places the student’s score on a scale of 1 (low) to 9 (high) and offers a broad overview of his or her performance.
Completing the Group Header Sheet

Assembling and dispatching the Answer Sheets

1. Ensure that all the Answer Sheets to be included in this group are the same way up. Check that student’s answers are marked clearly in pencil (the scanner may not pick them up otherwise), that there are no extraneous marks (the scanner may read these as ‘answers’) and that the ‘date of birth’ block has been filled in as instructed (we cannot calculate standardised scores if this information is inaccurate or missing).

2. Using an HB pencil, complete the Group Header Sheet opposite. Make sure that you follow the checklist below of information required. After you have filled in the Group Header Sheet, carefully tear down the perforated fold to separate it from the information about the Scoring and Analysis Service, which you may keep for future reference.

3. Securely package the groups of Answer Sheets, with each Group Header Sheet uppermost on the relevant pile. Please ensure that the edges of the sheets are not crumpled or torn in any way, and that there are no paper clips or staples.

4. Send by special delivery to:
 The GL Assessment Scoring and Analysis Service
 Bureau Division
 DRS Services Ltd.
 42/43 Potters Lane
 Kiln Farm, Milton Keynes
 MK11 3HQ

 Please note that GL Assessment cannot accept responsibility for loss or damage to Answer Sheets occurring in the post.

Checklist for completion of the Group Header Sheet

1. Always use an HB pencil. Do NOT use ink pen/biro. The scanner cannot read ink.

2. Print clearly the name, full postal address and telephone number of the school/college, giving the name of the person who may be contacted in the event of a query. Ensure that you mark the update changes box if your details have changed. Alternatively, login to the Testwise Reporting Service at https://reports.testwise.net to update any information on your account.

3. Print date of test in the space provided; mark corresponding boxes.

4. Mark one of the boxes to indicate the level of the test administered.

5. Mark the box that identifies the year group to which the group of Answer Sheets relates.

6. Print the title of the class/group in the space provided; choose an appropriate number/letter/number identifier and mark the corresponding boxes.

7. Mark any options required. If none is marked, only the standard service will be provided. All options are provided at extra cost.

8. The GL Assessment Scoring and Analysis Service reserves the right to return abused sheets unread.

9. Please do NOT use photocopies, ink pad stampers or post-its/labels.

Supply of scores to the school/college

All Answer Sheets received by the service will be scored and reports are returned to the school or college, within seven to ten working days. Please note that the service is closed over the Christmas and New Year period and may take up to 15 working days during the peak period of September and October.

All reports are accessed via our Testwise Reporting Service (TRS) at https://reports.testwise.net.

Cost of scoring

Details of the Scoring and Analysis Service prices are given in the current edition of GL Assessment’s catalogue.

Please contact GL Assessment’s Customer Support Team on 0845 602 1937 (option 1) for all queries about:
- technical aspects (such as analysis and interpretation of the scores);
- costs and options;
- ordering Answer Sheets;
- how to complete the Group Header Sheet; and
- any other general enquiries about the service.

Please ensure your account details are up-to-date online so that there is no delay to your reports.

If you are new to CAT and require an account to be set up please contact catscoringservice@gl-assessment.co.uk.

In case of loss or damage to the original report, partly processed data files will be retained in complete confidentiality by the service for six months or the duration of the current academic year, whichever is the longest, after which they will be destroyed.

Answer Sheets will be retained for six months or the duration of the current academic year, whichever is the longest, after which they will be destroyed.

Schools or colleges will be invoiced by GL Assessment after the reports are made available.

Answer Sheets that have not been completed using an HB pencil cannot be processed and will be returned with charge.
Please see opposite for instructions on how to complete this sheet. Use an HB PENCIL – do not use ink or biro.

Please mark your boxes like NOT like . Rub out mistakes thoroughly.

1. Name and address of school/college, with a contact name
 Update your contact details on the Testwise Reporting Service (TRS)

 Contact person: ____________________________
 School/college name: ________________________
 Address: ___________________________________
 Postcode: ____________________________
 Email: ____________________________
 Telephone: ____________________________
 Fax: ____________________________

2. Date of testing

<table>
<thead>
<tr>
<th>Day</th>
<th>Month</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>January</td>
<td>2012</td>
</tr>
<tr>
<td>12</td>
<td>February</td>
<td>2013</td>
</tr>
<tr>
<td>13</td>
<td>March</td>
<td>2014</td>
</tr>
<tr>
<td>14</td>
<td>April</td>
<td>2015</td>
</tr>
<tr>
<td>15</td>
<td>May</td>
<td>2016</td>
</tr>
<tr>
<td>16</td>
<td>June</td>
<td>2017</td>
</tr>
<tr>
<td>17</td>
<td>July</td>
<td>2018</td>
</tr>
<tr>
<td>18</td>
<td>August</td>
<td>2019</td>
</tr>
<tr>
<td>19</td>
<td>September</td>
<td>2020</td>
</tr>
<tr>
<td>20</td>
<td>October</td>
<td>2021</td>
</tr>
<tr>
<td>21</td>
<td>November</td>
<td>2022</td>
</tr>
<tr>
<td>22</td>
<td>December</td>
<td>2023</td>
</tr>
</tbody>
</table>

3. Test level administered

 Pre-A | A | B | C | D | E | F | G | CATAS
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7-8+ years</td>
<td>Y3</td>
<td>P4</td>
<td>Y4 (P4)</td>
<td>2nd Cl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-9+</td>
<td>Y4</td>
<td>P5</td>
<td>Y5 (P5)</td>
<td>3rd Cl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-10+</td>
<td>Y5</td>
<td>P6</td>
<td>Y6 (P6)</td>
<td>4th Cl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-11+</td>
<td>Y6</td>
<td>P7</td>
<td>Y7 (P7)</td>
<td>5th Cl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-12+</td>
<td>Y7</td>
<td>S1</td>
<td>Y8 (F1)</td>
<td>6th Cl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-13+</td>
<td>Y8</td>
<td>S2</td>
<td>Y9 (F2)</td>
<td>1st Yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-14+</td>
<td>Y9</td>
<td>S3</td>
<td>Y10 (F3)</td>
<td>2nd Yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-15+</td>
<td>Y10</td>
<td>S4</td>
<td>Y11 (F4)</td>
<td>3rd Yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-16+</td>
<td>Y11</td>
<td>S5</td>
<td>Y12 (F5)</td>
<td>4th Yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-17+</td>
<td>Y12</td>
<td>S6</td>
<td>L6</td>
<td>5th Yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17+</td>
<td>Y13</td>
<td>S6</td>
<td>U6</td>
<td>6th Yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Year group

<table>
<thead>
<tr>
<th>Age</th>
<th>England & Wales</th>
<th>Scotland</th>
<th>Northern Ireland</th>
<th>Republic of Ireland</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-8+ years</td>
<td>Y3</td>
<td>P4</td>
<td>Y4 (P4)</td>
<td>2nd Cl</td>
</tr>
<tr>
<td>8-9+</td>
<td>Y4</td>
<td>P5</td>
<td>Y5 (P5)</td>
<td>3rd Cl</td>
</tr>
<tr>
<td>9-10+</td>
<td>Y5</td>
<td>P6</td>
<td>Y6 (P6)</td>
<td>4th Cl</td>
</tr>
<tr>
<td>10-11+</td>
<td>Y6</td>
<td>P7</td>
<td>Y7 (P7)</td>
<td>5th Cl</td>
</tr>
<tr>
<td>11-12+</td>
<td>Y7</td>
<td>S1</td>
<td>Y8 (F1)</td>
<td>6th Cl</td>
</tr>
<tr>
<td>12-13+</td>
<td>Y8</td>
<td>S2</td>
<td>Y9 (F2)</td>
<td>1st Yr</td>
</tr>
<tr>
<td>13-14+</td>
<td>Y9</td>
<td>S3</td>
<td>Y10 (F3)</td>
<td>2nd Yr</td>
</tr>
<tr>
<td>14-15+</td>
<td>Y10</td>
<td>S4</td>
<td>Y11 (F4)</td>
<td>3rd Yr</td>
</tr>
<tr>
<td>15-16+</td>
<td>Y11</td>
<td>S5</td>
<td>Y12 (F5)</td>
<td>4th Yr</td>
</tr>
<tr>
<td>16-17+</td>
<td>Y12</td>
<td>S6</td>
<td>L6</td>
<td>5th Yr</td>
</tr>
<tr>
<td>17+</td>
<td>Y13</td>
<td>S6</td>
<td>U6</td>
<td>6th Yr</td>
</tr>
</tbody>
</table>

5. Class/group name

<table>
<thead>
<tr>
<th>Class/group identifier (mark no more than ONE letter)</th>
<th>Options required</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A), (K), (U), (B)</td>
<td>(A), (K), (U), (B)</td>
</tr>
<tr>
<td>(B), (L), (V), (C)</td>
<td>(B), (L), (V), (C)</td>
</tr>
<tr>
<td>(C), (M), (W), (D)</td>
<td>(C), (M), (W), (D)</td>
</tr>
<tr>
<td>(D), (S), (X), (E)</td>
<td>(D), (S), (X), (E)</td>
</tr>
<tr>
<td>(E), (O), (Y), (F)</td>
<td>(E), (O), (Y), (F)</td>
</tr>
<tr>
<td>(F), (P), (Z), (G)</td>
<td>(F), (P), (Z), (G)</td>
</tr>
<tr>
<td>(G), (Q), (X), (H)</td>
<td>(G), (Q), (X), (H)</td>
</tr>
<tr>
<td>(I), (J), (B), (L)</td>
<td>(I), (J), (B), (L)</td>
</tr>
<tr>
<td>(J), (K), (T), (A)</td>
<td>(J), (K), (T), (A)</td>
</tr>
</tbody>
</table>

6. Number of pupil answer sheets included

<table>
<thead>
<tr>
<th>Class/group identifier (mark no more than ONE letter)</th>
<th>Options required</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A), (K), (U), (B)</td>
<td>(A), (K), (U), (B)</td>
</tr>
<tr>
<td>(B), (L), (V), (C)</td>
<td>(B), (L), (V), (C)</td>
</tr>
<tr>
<td>(C), (M), (W), (D)</td>
<td>(C), (M), (W), (D)</td>
</tr>
<tr>
<td>(D), (S), (X), (E)</td>
<td>(D), (S), (X), (E)</td>
</tr>
<tr>
<td>(E), (O), (Y), (F)</td>
<td>(E), (O), (Y), (F)</td>
</tr>
<tr>
<td>(F), (P), (Z), (G)</td>
<td>(F), (P), (Z), (G)</td>
</tr>
<tr>
<td>(G), (Q), (X), (H)</td>
<td>(G), (Q), (X), (H)</td>
</tr>
<tr>
<td>(I), (J), (B), (L)</td>
<td>(I), (J), (B), (L)</td>
</tr>
<tr>
<td>(J), (K), (T), (A)</td>
<td>(J), (K), (T), (A)</td>
</tr>
</tbody>
</table>

7. Options (see page 1 for details)

 (a) Report options

 Individual report for teachers
 Individual report for students
 Summary report for senior leaders
 Summary presentation for senior leaders
 CSV report

 Options required

 (b) Additional Indicators

 Retrospective KS2 (Group report for teachers only) (D)
 KS3 (C, F)
 GCSE (C)
 Standard & Intermediate Grades (C)
 AS/A level (E, F, G)

 Indicators will automatically be generated in CAT4 reports depending on report type, level taken and geographical location. The options outlined above show which additional indicators can be selected for each level.

 Note that not all indicators are available for every level of CAT4.

8. Further use of data

 I do not consent to the further use of my data as specified overleaf
Further use of data

In accordance with the requirements of the Data Protection Act, we guarantee to treat your data confidentially and will never identify any student or school/college by name in any report which may be produced. If you are not willing for your data to be used in this way, please mark the appropriate box on the Group Header Sheet.

In order to provide as up-to-date information as possible, GL Assessment would like to use your data to monitor the CAT4 norms and explore the relationship between CAT scores and other assessments. This will ensure that future users (including yourself) will benefit from reliable contemporary comparisons and improved services.
Please use this section to add further information from CAT4 conferences, marketing materials, reports you choose to print and any other materials.

GL Assessment regularly runs events on CAT. For more information on updates that you may wish to add to this section, please visit www.cat4support.com.
Cognitive Abilities Test Attitudinal Survey (CATAS)

Introduction

GL Assessment has collaborated with the Centre for Successful Schools, Keele University, to create an attitudinal survey that may be used alongside CAT4 Levels D, E or F. If administered year-on-year the Cognitive Abilities Test Attitudinal Survey (CATAS) can be used to monitor trends and changes in students’ attitudes and how these reflect and respond to school initiatives.

This survey has been developed in response to the need for schools to collect, analyse and evaluate evidence of students’ views and perceptions about the quality of their school’s provision. The idea of young people in school finding and using their ‘voice’ has been growing over the past two decades and recognises the huge potential contribution students can make. An easy way to capture this contribution is by surveying school cohorts on a regular basis.

CATAS allows students’ attitudes to be considered and evaluated alongside data on their abilities as evidenced by CAT4. The addition of this short survey offers a time-efficient and effective way of finding out what students think. Importantly, it is inclusive and involves those who do not ‘speak up’ and who may be at risk of becoming disengaged.

The CATAS questions are divided into six sub-scales:

- school standards
- school policy and provision
- teaching and learning
- relationships in school
- student wellbeing
- parental support.

The questions that make up each sub-scale are given at the end of this section.
Use of CATAS

CATAS should be seen as a starting point for a consultative process with students. There are three versions:

<table>
<thead>
<tr>
<th>CATAS Level D</th>
<th>This should be used no sooner than the end of the first term in school, because students’ feedback should be based on at least one term spent in school, or at any point thereafter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(used alongside CAT4 Level D)</td>
<td></td>
</tr>
<tr>
<td>CATAS Level E</td>
<td>These versions may be used at any point during the school year.</td>
</tr>
<tr>
<td>(used alongside CAT4 Level E)</td>
<td></td>
</tr>
<tr>
<td>CATAS Level F</td>
<td></td>
</tr>
<tr>
<td>(used alongside CAT4 Level F)</td>
<td></td>
</tr>
</tbody>
</table>

Administration of the paper survey

Although CATAS is not a test, it should be administered in a formal environment so that each student has the freedom to present his or her own views without pressure from peers. This means that sufficient time should be set aside to administer the survey and the students should have the quiet and space needed to enable them to focus on its completion.

When introducing CATAS, it is important to stress that it is not a test and that there are no right or wrong answers. It is also important for the students to give their opinions honestly as their contribution is integral to monitoring and improving all aspects of school life.

No student should be able to see or otherwise influence another student’s responses.

If assistance is required, the student should signal to the administrator and wait for them to come over.

Completing the survey

CATAS is untimed but should take approximately 20 minutes to complete.

Each student requires a CATAS booklet, a student response sheet (that will be computer scored by GL Assessment’s scoring services) and an HB pencil.

1. Ask the students to complete the student details section if this has not been pre-printed.
2 Read out to the students the following instructions:

In the following survey you will be asked for your views on school life. This is not a test and there are no right or wrong answers. Your views are important, so please answer honestly.

The survey consists of two different kinds of statements. You need to decide whether you agree or disagree with statements about different aspects of school life.

Work through the two examples on the student response sheet and shown below (these may be adapted as required for understanding).

Statement: Most of the homework I am given to do is really interesting

Options: strongly agree/agree/not sure/disagree/strongly disagree

- Mark the box under the heading ‘strongly agree’ if you find most homework really interesting all of the time.
- Mark the box under the heading ‘agree’ if you find homework really interesting most of the time.
- If you are not sure, mark the box under the heading ‘not sure’.
- Mark the box under the heading ‘disagree’ if most of the time you do not find homework really interesting.
- Mark the box ‘strongly disagree’ if you don’t find homework interesting at all.

Say:

If you want to change your response, just rub out the first mark and fill in your preferred response.

Also, you need to decide if something is true all or some of the time or not at all.

Statement: I get so interested in my work I don’t want to stop

Options: always/often/sometimes/rarely/never

- Mark the box under the heading ‘always’ if your work is always so interesting that you don’t want to stop.
- Mark the box under the heading ‘often’ if this is often but not always the case.
- If this happens some of the time, mark the box under the heading ‘sometimes’.
- If the work is only occasionally interesting enough that you don’t want to stop, mark the box under the heading ‘rarely’.
- If the work is never so interesting that you don’t want to stop, mark the box under the heading ‘never’.
Say:

Again, if you want to change your response just rub out the first mark and fill in your preferred response.

Turn over now and begin.

3 At the end of CATAS there are a small number of statements for particular year groups. Please draw your students’ attention to those appropriate to them:

- Statements 53–56 for Y7 in England and Wales; S1 in Scotland; Y8 in Northern Ireland
- Statements 57–58 for Y8 in England and Wales; S2 in Scotland; Y9 in Northern Ireland
- Statements 59–60 for Y9 in England and Wales; S3 in Scotland; Y10 in Northern Ireland

Administration of the digital survey

Each student needs his or her own personal computer or laptop, headphones and mouse.

Enough time should be allocated to allow students to settle, be given the introduction to CATAS and complete the survey. A total of 30 minutes should be sufficient.

As with the paper version of CATAS, administration should be in a formal environment, in a quiet room without interruptions, so that each student has the freedom to present his or her own views without pressure from peers.

Explain to the students that they are going to be asked for their views on school life and that their responses are important to the school. Ensure that the students understand that CATAS is not a test and that there are no right or wrong answers.

The students should be told they must work in silence but, if they have a query, they should raise their hand and wait for the administrator to approach them.

While the students are completing the survey, the administrator should walk round the computer suite to check that they are progressing appropriately and that they are not having difficulty with the methods of answering questions.
Accessing the survey

Once the students have been added to the Testwise register by the administrator, they can then access the login page and click the Student icon. They will then enter the Register ID for the test. The students should select their name and then click on the Take Now button.

Alternatively, the administrator may want to set up each computer for individual students in advance. If this is done, it is important that the students use the computer allocated to them. The following can act as a holding screen:
An introduction and examples of how to complete the survey are part of the program and the students can work through this section at their own pace. The voiceover introduces CATAS and gives the same examples as the paper version.

The survey consists of two different kinds of statements. You need to decide whether you agree or disagree with statements about different aspects of school life.

For example:

<table>
<thead>
<tr>
<th>Strongly agree</th>
<th>Agree</th>
<th>Not sure</th>
<th>Disagree</th>
<th>Strongly disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most of the homework I am given to do is really interesting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you want to change your response, just click on a different button.
Click on 'Next' to see the next example.

The students read each statement and click on their preferred response.
At the end, the following screen will ask the students to exit CATAS:

Thank you for completing the Survey
Click on 'End Survey' now.

At this point, their responses will be saved so that they can be analysed and reported.
Unexpected incidents

Make a note of any unexpected incident or interruption.

If there is a failure in your computer system while the students are completing the survey, it will not be possible to re-enter the survey at the point at which the failure occurred. In this instance, the students will need to start again.

If the students complete the survey and responses are stored (that is, they have clicked the ‘end survey’ button) and then the system fails, it will be possible to retrieve responses and reports from the GL Assessment backup server.

Should this happen, please contact the GL Assessment Customer Support Team on 0845 602 1937 and you will be connected to a Testwise adviser.

Special assessment needs

Students with reading difficulties or limited English, or who may need assistance indicating their responses, should not be excluded from completing CATAS. The statements may be read out and a teacher or teaching assistant can mark a student’s response as long as they do not influence that response.

Audio support is available for the digital version of CATAS. By clicking on the loudspeaker icon next to each statement, students will have the statement read to them.
The CATAS report

The CATAS report sets out analyses of responses to CATAS for a defined group, with a whole year group being the most usual grouping, and also for the individuals in that group.

The responses are presented within the six sub-scales of CATAS. They are also shown by statement, for the group only. Comparison is made with the national mean.¹ For example:

It is suggested that the six sub-scales taken together stand as a proxy for the students’ overall school experience. The extent to which their responses show a positive or negative attitude can be taken as an indication of the extent to which the students are responsive to, and supportive of, the purposes of the school. The survey is only of use if it can lead to focused action by schools to improve student commitment, expectation and achievement.

¹ A particular feature of surveys developed by the Centre for Successful Schools (CfSS) is that they facilitate a comparison with schools nationally. CfSS datasets include responses of more than 300,000 students and are reviewed annually in order to provide up-to-date comparative figures which allow schools to monitor their own outcomes year-on-year and to compare them nationally.
In the CATAS report, the group’s responses are analysed by gender against the national mean and, if this information is provided, by ethnicity, SEN status, free school meals and two discretionary criteria set by the school. The spider graph\(^2\) includes the group mean as well as the male/female and national mean.

\(^2\) The Testwise CATAS report displays this information as a bar chart.
Each statement is analysed individually showing the variation in response between males and females in the group.

Group analysis (by question and sub-scale)

<table>
<thead>
<tr>
<th>School standards</th>
<th>Mean percentages of students responding positively</th>
<th>All students - Group</th>
<th>National</th>
<th>Males - Group</th>
<th>National</th>
<th>Females - Group</th>
<th>National</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. This school is a good school</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. This school encourages students to develop self-confidence and make the most of their abilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. This school is giving me a good education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. This school recognises and rewards good work or behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. School rules are fair and reasonable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. The school is too slow to remove students who stop others learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. It is difficult to use school computers outside of lesson time to help me with my schoolwork/homework</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Students are consulted and listened to when decisions are made about the school</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Most teachers use a variety of ways of teaching to help us understand and learn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. My teachers take the time to explain things</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. I use computers in lessons to help me with my work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. My teachers encourage me to work hard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Most of my teachers set homework regularly (e.g. each week)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. My teachers encourage me to work hard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

School policy & provision

<table>
<thead>
<tr>
<th>School policy & provision</th>
<th>Mean percentages of students responding positively</th>
<th>All students - Group</th>
<th>National</th>
<th>Males - Group</th>
<th>National</th>
<th>Females - Group</th>
<th>National</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. School rules are fair and reasonable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. It is difficult to use school computers outside of lesson time to help me with my schoolwork/homework</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. It is difficult to use school computers outside of lesson time to help me with my schoolwork/homework</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Most of my teachers set homework regularly (e.g. each week)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. My teachers encourage me to work hard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Teaching & learning

<table>
<thead>
<tr>
<th>Teaching & learning</th>
<th>Mean percentages of students responding positively</th>
<th>All students - Group</th>
<th>National</th>
<th>Males - Group</th>
<th>National</th>
<th>Females - Group</th>
<th>National</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The teaching is good in this school</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Most of my teachers set homework regularly (e.g. each week)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Most of my teachers set homework regularly (e.g. each week)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Most of my teachers set homework regularly (e.g. each week)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Most of my teachers set homework regularly (e.g. each week)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. My teachers encourage me to work hard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. My teachers encourage me to work hard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2012 GL Assessment Limited
Each student’s responses are shown by sub-scale.

<table>
<thead>
<tr>
<th>Student name</th>
<th>CAT4 mean SAS</th>
<th>School standards</th>
<th>School policy & provision</th>
<th>Teaching & learning</th>
<th>Relationships in school</th>
<th>Student wellbeing</th>
<th>Parental support</th>
<th>Age-specific questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyne P Eagleson</td>
<td>118</td>
<td>38.6</td>
<td>28.6</td>
<td>18.7</td>
<td>43.9</td>
<td>50.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Jasmine Sieth</td>
<td>117</td>
<td>40.0</td>
<td>14.3</td>
<td>50.0</td>
<td>33.3</td>
<td>50.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Ravi Alphonisee Land</td>
<td>116</td>
<td>57.1</td>
<td>42.9</td>
<td>35.9</td>
<td>21.4</td>
<td>35.9</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Kylo Bolston</td>
<td>108</td>
<td>71.4</td>
<td>42.9</td>
<td>28.6</td>
<td>18.7</td>
<td>43.9</td>
<td>50.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Benno Marquardus-Ann Burns</td>
<td>106</td>
<td>28.6</td>
<td>14.3</td>
<td>18.7</td>
<td>43.9</td>
<td>50.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Tonika Runnere</td>
<td>105</td>
<td>38.6</td>
<td>28.6</td>
<td>35.9</td>
<td>21.4</td>
<td>35.9</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Luke P Temple</td>
<td>104</td>
<td>14.3</td>
<td>71.4</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Adam Keates</td>
<td>103</td>
<td>28.6</td>
<td>14.3</td>
<td>35.9</td>
<td>71.4</td>
<td>50.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Ryan Allan Fair</td>
<td>102</td>
<td>28.6</td>
<td>14.3</td>
<td>35.9</td>
<td>71.4</td>
<td>50.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Adam N Logan</td>
<td>101</td>
<td>57.1</td>
<td>14.3</td>
<td>35.9</td>
<td>71.4</td>
<td>50.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Richard Tom Burnley</td>
<td>100</td>
<td>57.1</td>
<td>57.1</td>
<td>50.0</td>
<td>75.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Natasha McCabe</td>
<td>100</td>
<td>14.3</td>
<td>28.6</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Venice Nicoson</td>
<td>100</td>
<td>14.3</td>
<td>28.6</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Jack Marchant</td>
<td>100</td>
<td>28.6</td>
<td>28.6</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Australia Pierson</td>
<td>100</td>
<td>28.6</td>
<td>28.6</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Jasmine D Nolan</td>
<td>100</td>
<td>28.6</td>
<td>28.6</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>George Skelton</td>
<td>100</td>
<td>14.3</td>
<td>71.4</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Benno Red Kelly</td>
<td>100</td>
<td>40.0</td>
<td>57.1</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Benno Jack</td>
<td>100</td>
<td>28.6</td>
<td>57.1</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Adam McDonald</td>
<td>99</td>
<td>57.1</td>
<td>57.1</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Ryan Robin, James Alen</td>
<td>99</td>
<td>42.9</td>
<td>57.1</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Bindi J Freeman</td>
<td>99</td>
<td>42.9</td>
<td>57.1</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Aiden L Macalister</td>
<td>98</td>
<td>14.3</td>
<td>71.4</td>
<td>18.7</td>
<td>35.9</td>
<td>50.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Jason Brandlake</td>
<td>98</td>
<td>42.9</td>
<td>14.3</td>
<td>35.9</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Josh Smith</td>
<td>98</td>
<td>28.6</td>
<td>28.6</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Rachael Chisholm</td>
<td>98</td>
<td>28.6</td>
<td>14.3</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Aiden J McInnes</td>
<td>98</td>
<td>28.6</td>
<td>28.6</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Benjamin J Stewart</td>
<td>97</td>
<td>42.9</td>
<td>57.1</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Nathan C Grice</td>
<td>97</td>
<td>57.1</td>
<td>28.6</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Alastair CG Balderston</td>
<td>97</td>
<td>57.1</td>
<td>28.6</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Robbie McCallum</td>
<td>96</td>
<td>28.6</td>
<td>57.1</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Lewis Noon</td>
<td>96</td>
<td>28.6</td>
<td>57.1</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Jack Marchant</td>
<td>96</td>
<td>28.6</td>
<td>57.1</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Cameron Chisholm</td>
<td>96</td>
<td>28.6</td>
<td>57.1</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Aaran JR Melville</td>
<td>96</td>
<td>0.0</td>
<td>57.1</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Kimberley EI Girdwood</td>
<td>95</td>
<td>42.9</td>
<td>42.9</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Kristina L Macaulay</td>
<td>95</td>
<td>14.3</td>
<td>71.4</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Jason Bradshaw</td>
<td>95</td>
<td>42.9</td>
<td>57.1</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Sam Neil Kelly</td>
<td>95</td>
<td>42.9</td>
<td>57.1</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Ryan Jack</td>
<td>95</td>
<td>28.6</td>
<td>57.1</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Cameron Chisholm</td>
<td>95</td>
<td>28.6</td>
<td>57.1</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Jack Marchant</td>
<td>95</td>
<td>28.6</td>
<td>57.1</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Cameron Chisholm</td>
<td>95</td>
<td>28.6</td>
<td>57.1</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Aaran JR Melville</td>
<td>95</td>
<td>0.0</td>
<td>57.1</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Kimberley EI Girdwood</td>
<td>95</td>
<td>42.9</td>
<td>57.1</td>
<td>33.3</td>
<td>50.0</td>
<td>75.0</td>
<td>0.0</td>
<td>50.0</td>
</tr>
</tbody>
</table>

Copyright © 2012 GL Assessment Limited
Questions in CATAS by category

School standards

1 This school is a good school
37 This school is giving me a good education
8 This school encourages students to develop self-confidence and make the most of their abilities
42 There is good discipline in this school
40 This school recognises and rewards good work or behaviour
16 The school gives everybody lots of information about what is going on here
30 Poor student behaviour gives this school a bad name

School policy and provision

5 School rules are fair (and reasonable)
12 The school is too slow to remove students who stop others from learning
33 Students are consulted and listened to when decisions are made about the school
44 The school has good policies for combating bullying and discrimination at school
27 I am allowed to use school computers out of lesson time to help me with my schoolwork/homework
25 This school supports students who are the victims of bullying or discrimination
49 We have opportunities outside of lesson time to do extra learning activities or extra study

Teaching and learning

4 The teaching is good in this school
6 The teachers are good at dealing with bullying
9 The teachers are good at dealing with disruptive (naughty) students
13 My teachers take the time to explain things
31 Most of my teachers set homework regularly (each week)
41 Teachers mark my work regularly
43 My teachers encourage me to work hard
28 Most teachers use a variety of ways of teaching to help us understand and learn
34 My teachers help me set targets to make my work better
32 When I use a computer in lessons, I learn more easily
39 Using computers in the lesson makes the work more interesting
18 The teachers explain clearly what I am supposed to learn in the lesson
23 My teachers take time to discuss my progress with me, and advise me how I can improve my work
22 I use computers in lessons to help me with my work

Relationships in school

3 In class, I enjoy working in groups with other pupils
29 The students here encourage each other in lessons
11 Most of the teachers here are respected by the students
38 I get on well with most of the teachers who teach me
46 Other students make fun of people who work hard
50 This year, I have been bullied by other students

Student wellbeing

7 I often take part in school activities at lunchtime or after school
2 The work I do in school is very important to me
10 I usually work as hard as I can in school
35 There is a lot of truancy at school (students missing lessons without good reason)
14 I am usually happy at this school
36 Doing homework is important for helping me to be successful in my education
15 Doing homework in a subject is important for giving me a better understanding of that subject
20 My homework takes longer to do than it is supposed to
26 I manage to hand in my homework on time
24 I resist pressure from others to behave badly
17 I feel safe in this school
45 Wearing school uniform makes all students feel equal
47 Other students try to disrupt my lessons
51 This year, I have seen other students bullied

Parental support

21 There is a quiet place to work at home, where I can do my homework
19 My parents/carers help and advise me with my schoolwork
48 My parents/carers ask about what I am learning at school
52 My parents/carers look at the work I have been doing in my books

Questions to be answered by Y7 (S1) only

53 I have to work much harder here than I did in my primary school
54 I was given a lot of help to make me feel comfortable when I moved to this school from primary school
55 It is more fun having different teachers for each subject than one teacher for most of the day
56 I have made new friends at this school

Questions to be answered by Y8 (S2) only

57 I have a group of good friends at this school
58 I take my work more seriously in Y8 (S2) than I did in Y7 (S1)

Questions to be answered by Y9 (S3) only

59 I have to work much harder now than I did in Y7 (S1) and Y8 (S2)
60 I am looking forward to having options for the subjects I study next year